SCS ENGINEERS

Results of Additional Subsurface Investigation

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California (SCDHS ID #00002017; NCRWQCB Site #1TSO501) (Assessor's Parcel No. 134-171-053)

File Number 01203312.00

Prepared by:

SCS Engineers 3645 Westwind Boulevard Santa Rosa, California 95403

To:

Mr. Cliff Ives Sonoma County Department of Health Services 475 Aviation Blvd., Suite 220 Santa Rosa, California 95403

May 6, 2005

LIMITATIONS/DISCLAIMER

This report has been prepared for Ghilotti Construction Company with specific application to additional subsurface exploration for the property located at 246 Ghilotti Avenue, Santa Rosa, California. This report has been prepared in accordance with the care and skill generally exercised by reputable professionals, under similar circumstances, in this or similar localities. The conclusions contained herein are based on analytical data, and points of exploration. The nature and extent of subsurface conditions may and likely do vary between borings and/or points of exploration. No other warranty, either expressed or implied, is made as to the professional conclusions presented herein.

Access to the property and the surrounding area was limited by buildings, roadways, underground and above-ground utilities and other miscellaneous site and site vicinity features. Therefore, the field exploration and points of subsurface observation were somewhat restricted.

Changes in site use and conditions may occur due to man-made changes or variations in rainfall, temperature, water usage, or other factors. Additional information which was not available to the consultant at the time of this assessment or changes which may occur on the site or in the surrounding area may result in modification to the site and the vicinity that would impact the summary presented herein. This report is not a legal opinion.

We trust this report provides the information you require at this time and we appreciate the opportunity to work with you on this project. If you require any additional information, or have any questions, please do not hesitate to contact SCS at (707) 546-9461.

Kevin L. Coker REA 7887

CA registration fees paid through 06/30/05

Stephen Knuttel PG 7674

CA registration fees paid through 07/31/05

5-6-05

KNUTTEL

Date

Date

Introduction

SCS Engineers (SCS) is pleased to present the results of additional subsurface investigation performed at Ghilotti Construction Company, 246 Ghilotti Avenue, Santa Rosa, California. This work was performed in accordance with a Work Plan (PNEG, 2002b) which was subsequently approved by the Sonoma County Department of Health Services (SCDHS, 2002). Extensive delays were encountered due to issues surrounding approval of the access agreement for the work proposed in Ghilotti Avenue. The site is located as shown on the Site Location Map, Figure 1. General site features are shown on the Site Plan, Figure 2.

Background

On March 19, 1992, Trans Tech Consultants (TTC) supervised Petroleum Engineering's removal of three underground storage tanks (USTs) from the site, consisting of one 2,000-gallon gasoline UST, one 8,000-gallon diesel fuel UST, and one 7,500-gallon diesel fuel UST (Ghilotti, 1995). Hydrocarbon odor emanated from the excavation, some sand on the bedding was stained, and a film of hydrocarbon product was observed on water in the excavation. Six sidewall soil samples, a soil sample from under each UST, a sample of soil from an excavation stockpile, and one water sample were obtained from the excavation. The approximate excavation limits are shown on Figure 2. Analytical results from the excavation pit sampling indicated an impact by petroleum-related hydrocarbons (Ghilotti, 1995).

On October 1, 1992, Ghilotti Construction Company (Ghilotti) extended and widened the north end of the tank excavation and removed soil below a concrete slab located between the UST excavation and the former fuel island. The excavation was extended to about fourteen feet below existing ground surface (bgs), was widened laterally two feet to the west, four feet to the north, and approximately fifteen feet to the east (Figure 2). The soil beneath the concrete slab was removed to depths of between approximately four feet and seven feet bgs (Ghilotti, 1995). TTC observed the removal of the additional impacted soils, the collection of soil samples for classification, and the field screening of soil using an organic vapor analyzer. On October 6, 1992, Ghilotti laterally extended the southeast portion of the excavation to remove additional impacted soil. TTC returned to the site on October 7, 1992 to collect excavation bottom samples. On October 13, 1992, Ghilotti deepened the eastern side of the excavation to depths between 11 and 14 feet bgs, in order to remove impacted soil detected in previously collected soil samples. Additional soil samples were collected from the bottom of the excavation. Laboratory analysis of soil samples collected from the final excavation limits indicated that concentrations of total petroleum hydrocarbons (TPH) as gasoline (g), as diesel (d), and benzene, toluene, ethyl benzene, and xylenes (BTEX) were non-detect (ND). The soil analytical results from the excavation activities are presented in Tables 1 and 2.

Three borings (B-1, B-2, and B-3) were drilled, sampled, and subsequently converted into monitoring wells MW-1, MW-2, and MW-3, respectively in November 1992 (Ghilotti, 1995). Soil analytical results are presented in Table 3.

Sensitive Receptor Survey

A Sensitive Receptor Survey (SRS) was conducted for the site in September 1996 (PNEG, 1996). The subject site has a water supply well located approximately 400 feet east of the former UST locations (Figure 5). The on-site water supply well has been on a quarterly sampling program since 1998 and has been ND for all target analytes since April 2002 (Table 6). The Syar Asphalt site to the south of the Ghlotti property also has a water supply well located near the railroad tracks (Figure 5). Numerous residences to the north/northwest were noted to have water supply wells. Recent information obtained from an on-going investigation of the Royal Petroleum facility northwest of the site (365 Todd Road) reveals that many of the water supply wells in the vicinity have been connected to the City of Santa Rosa Water Utility system because of a fuel release from the Royal Petroleum facility located at 365 Todd Road. No sensitive receptors, other than the on-site water supply well, were noted within 500 feet of the former UST locations.

Site Geology/Hydrogeology

The results of the January 2005 drilling program indicated a lithology generally consisting of sandy clay to sandy silt with gravel underlain by silty to sandy clays with gravel to the maximum depth explored of 21.5 feet bgs by hollow stem augers. Results from the one Cone Penetrometer Test (CPT) sounding on the site revealed silts and clays with minor sand layers to a depth of approximately 85 feet bgs. Free groundwater was encountered at depths ranging from approximately 9.5 to 11.5 feet bgs. Boring logs are presented in Appendix A.

Depth to groundwater has fluctuated seasonally during this investigation from approximately 3.5 feet bgs to 15.5 feet bgs. The groundwater flow direction on the site varies throughout the year, but has been generally to the southwest at gradients ranging from 0.03 to 0.002 (Table 5).

Monitoring Well Installation - 2005

Seven additional monitoring wells (MW-04 through MW-10) were drilled, sampled and installed at the approximate locations shown on Figure 2 on February 1, 2, and 3, 2005. The borings for the monitoring wells were drilled using 8-inch diameter hollow stem augers and were converted into monitoring wells using 2-inch diameter Schedule 40 flush threaded PVC material. The screened interval in the monitoring wells consists of 0.020 inch machine slotted screen which extends from approximately 5 to 20 feet bgs. The depth of each boring is approximately 20.5-21.5 feet, with 15 feet of screen in each well. A #2/12 sand was used to create a filter pack around the screen. The filter pack was brought approximately 1 to 1.5 feet above the top of the screen, an approximate 2 foot bentonite seal was placed on top of the sand filter pack, and the wells were completed to the surface with a cement seal. Additional well completion details are presented in Appendix B.

The PVC well casing in each monitoring well extends to within 6 inches bgs and the casing is fitted with a waterproof locking cap. The wells are protected by traffic-rated, water-tight circular vaults.

Based on the results of the previous drilling programs, soil samples were collected and examined for lithology from each of the borings beginning at an approximate depth of 5 feet bgs, and every 5 feet thereafter to a maximum depth of approximately 21 feet bgs. Three to four soil samples from each of the borings were submitted for analysis. The ends of the sample tubes selected for analysis were covered with Teflon® Tape and sealed with plastic caps. Soil samples were labeled, stored under refrigerated conditions, and transported under Chain-of-Custody documentation to AS for analysis. AS is a California Department of Health Services certified laboratory for the analysis requested. Copies of AS' current certifications have been reviewed and are on file. The soil samples were collected following Standard Soil and Water Sampling Procedures and QA/QC Protocol.

The augers used for drilling were pressure washed, and the small sampling equipment was washed in a detergent solution and rinsed to prevent cross contamination between borings. The drill cuttings were placed on and covered with plastic sheeting, pending disposal. The water generated by decontamination, well development, and sampling is stored at the site in steel 55-gallon UN/DOT-approved drums, pending disposal. Disposal of the soil and groundwater generated during the subsurface investigation activities is scheduled for disposal by Integrated Wastestream Management in the near future.

Laboratory Analysis - Soil

Soil samples collected from the monitoring well borings were analyzed for TPH-g using EPA Method 8015M, for TPH-d by EPA Method 3550/8015M, and for BTEX and MTBE by EPA Method 8020.

Well Development

The seven newly installed monitoring wells, MW-04 through MW-10, were swabbed to set the filter pack during well installation to the extent feasible. They were developed on February 2, 2005 using a surge block and a submersible field portable groundwater purging pump. Information obtained during well development was recorded on field sampling forms from which Well Development Records were generated, copies of which are presented in Appendix C.

Groundwater Monitoring

Depth to groundwater measurements were collected from each of the previously existing wells (MW-1 through MW-3) in addition to the newly installed wells (MW-04 through MW-10) on February 11, 2005. Depths to groundwater ranged from approximately 3.5 to 6 feet bgs. The depth-to-groundwater measurements were combined with the well casing elevations to determine the groundwater flow direction and gradient. Casing and groundwater elevations are reported in feet relative to mean sea level. Depths to groundwater are expressed in feet. For the 1st Quarter 2005

sampling event, the groundwater flow direction was interpolated to be southwesterly at a calculated gradient of 0.002 feet per foot (Figure 3, Table 5).

Groundwater Sampling

After the newly installed monitoring wells were developed, they were allowed to set for approximately 9 days prior to collecting depth to groundwater measurements. After depth to groundwater measurements were collected, MW-1 through MW-10 were checked for the presence of free product by subjective evidence and using an oil/water interface probe. No free product was reported during this monitoring event. The wells were then purged of approximately 3 wetted well casing volumes of groundwater, or at least 5 gallons, whichever was greater, using a submersible pump. Temperature, pH, conductivity, turbidity, and dissolved solids were measured during purging to help demonstrate that fresh groundwater was entering the well casing for sampling. Each well was allowed to recover prior to sampling. Groundwater samples were collected using a separate disposable bailer for each well, and were transferred into the appropriate containers supplied by the laboratory for analysis. The samples were labeled, stored under refrigerated conditions, and transported under Chain-of-Custody to AS. All samples were collected following Standard Soil and Water Sampling Procedures and QA/QC Protocol. Information obtained during sampling was recorded on field sampling forms from which Well Purge Records were generated, copies of which are presented in Appendix C. The groundwater generated during the recent well sampling activities is stored at the site in 55-gallon UN/DOT-approved drums, pending disposal.

Well Survey

The tops of the new monitoring well casings were surveyed under the supervision of a California licensed land surveyor to 0.01 feet to determine their elevations relative to mean sea level on March 9, 2005. In addition, the latitude and longitude of the monitoring wells has been determined to within 1 meter. The surveyed monitoring well elevations and monitoring well locations will be submitted electronically to the State Department of Water Resources Geotracker database.

Cone Penetrometer Testing - 2005

PNEG¹ proposed to locate the second viable water-bearing zone beneath the site with the use of CPT equipment (PNEG, 2002b). The CPT rig mobilized to the site and conducted a lithology study at the approximate location indicated on Figure 2 on March 2, 2005. Water-bearing zones were identified at approximate depths of 38 and 82 feet bgs. Grab groundwater samples were collected at these depths. A copy of the laboratory report is presented in Appendix E. A copy of Precision Drilling & Sampling's CPT Report is presented in Appendix F.

¹ Pacific Northwest EnviroNet Group, Inc. (PNEG) became a part of SCS in July 2003.

Laboratory Analysis

The groundwater samples collected from the newly installed wells were analyzed for TPH-g by EPA Method 8015M, and for BTEX and the five ether-based oxygenates (MTBE, DIPE, ETBE, TAME, and TBA) by EPA Method 8260B. The groundwater samples collected from MW-1 through MW-3 were analyzed for the five ether-based oxygenates only. The grab groundwater samples collected from CPT-01 were analyzed for TPH-g by EPA Method 5030/8015M, for TPH-d by EPA Method 3510/8015M, and for BTEX and the five ether-based oxygenates by EPA Method 8260B.

Soil Analytical Results

The soil samples collected from MW-04 through MW-10 were below the laboratory RDL for all target analytes. Soil analytical results are presented in Table 4.

Groundwater Analytical Results

Four of the seven newly installed wells contained MTBE above the laboratory RDL. MTBE was detected at concentrations of 1.9 micrograms per liter (μ g/L) in MW-04, 6.9 μ g/L in MW-07, 3.2 μ g/L in MW-09, and 20 μ g/L in MW-10. MTBE was not detected above the laboratory RDL in MW-05, MW-06 and MW-08. The additional fuel oxygenates and TPH-g were not detected above the laboratory RDL in any of the monitoring well groundwater samples. Xylenes were detected in the sample collected from MW-04 at a concentration of 1.1 μ g/L; the BTEX constituents were below the laboratory RDL in all other samples. The sample collected at a depth of 38 feet bgs from the CPT sounding contained MTBE at a concentration of 2.8 μ g/L and the deeper sample collected at a depth of 82 feet bgs was below the laboratory report detection limit (RDL) for all target analytes.

Discussion

As indicated on Figure 4, the lateral extent of the MTBE groundwater impact has not been adequately assessed to the west/southwest of MW-10 and to the north of MW-07. The source of the MTBE ($2.8 \,\mu\text{g/L}$) detected in the CPT groundwater sample at 38 feet bgs is suspect at this time as it may have been caused by downward migration of groundwater from the upper water-bearing interval.

Recommendations

SCS recommends continued monitoring at the site to confirm the recent analytical results generated from the 7 newly installed wells MTBE and BTEX by 8260. Base on current and past results from the site, MTBE and possible trace concentrations of BTEX appear to be the only constituents of concern and it is therefore recommended that the samples from all the wells be monitored for only MTBE and BTEX by EPA Method 8260. Upon completion of one full hydrologic cycle of sampling

of the new wells, additional monitoring points to the west/southwest of MW-10 and to the north of MW-7 may be required in order to adequately assess the lateral extent of the MTBE impacted groundwater or a request for site closure will be presented.

Attachments File No. 01203312.00

Figure 1: Site Location Map

Figure 2: Site Plan

Figure 3: Site Plan - Groundwater Flow Direction and Gradient for 02/11/05

Figure 4: Isoconcentration Map - MTBE in Groundwater for 02/11/05

Figure 5: Sensitive Receptors Map

Key to Diagram and Tables

Diagram A: MTBE & Groundwater Elevation vs Time

Table 1: Historical Soil Excavation, Stockpile and Groundwater Analytical Results

Table 2: Historical Excavation Soil Sample Results

Table 3: Soil Sample Results - Borings B-1 through B-3 (MW-1 through MW-3)

Table 4: Soil Analytical Results – Monitoring Wells - 2005

Table 5: Groundwater Flow Direction and Gradient – 1996 to present

Table 6: Domestic Well Analytical Results

Table 7: Groundwater Analytical Results – Monitoring Wells

Table 8: CPT Groundwater Analytical Results

Appendices File 01203312.00

Appendix A

Unified Soil Classification System Chart and Boring Log Legend

Boring Logs for MW-04 through MW-10

DWR 188 Forms for MW-04 through MW-10

Appendix B

Well Completion Diagrams for MW-04 through MW-10

Appendix C

Well Development Records, dated February 2, 2005

Well Purge Records, dated February 11, 2005

Appendix D

Well Survey Report, dated March 10, 2005

Appendix E

Analytical Sciences Report #5020206, dated February 11, 2005

Analytical Sciences Report #5020207, dated February 11, 2005

Analytical Sciences Report #5020317, dated February 16, 2005

Analytical Sciences Report #5021401, dated February 23, 2005

Analytical Sciences Report #5030308, dated March 18, 2005

Appendix F

Precision Drilling & Sampling CPT Report

Reference List File No. 01203312.00

- Ghilotti, 1995. Personal communication between D. Ghilotti and L. Mackey-Taverner, June 26.
- PNEG, 1996. Monitoring Report, Sensitive Site Receptor Survey, and Request for Site Closure, 246 Ghilotti Avenue, Santa Rosa, California, October 15.
- PNEG, 1997a. Monitoring Report and Request for Site Closure, 246 Ghilotti Avenue, Santa Rosa, February 5.
- PNEG, 1997b. September 1997 Semiannual Groundwater Monitoring Report and Request for Site Closure, 246 Ghilotti Avenue, Santa Rosa, October 17.
- PNEG, 1998a. Semiannual Groundwater Monitoring Report for June 1998 Sampling, 246 Ghilotti Avenue, Santa Rosa, August 1998.
- PNEG, 1999a. Status Report for 246 Ghilotti Avenue, Santa Rosa, December 14.
- PNEG, 1999b. Results of the December 1999 Quarterly Monitoring Event and Domestic Well Sampling at 246 Ghilotti Avenue, Santa Rosa, February 28.
- PNEG, 2000a. Results of the March 2000 Quarterly Monitoring Event and Domestic Well Sampling at 246 Ghilotti Avenue, Santa Rosa, May 31.
- PNEG, 2000b. Results of the 2nd Quarter 2000 Monitoring Event and Domestic Well Sampling at 246 Ghilotti Avenue, Santa Rosa, August 7.
- PNEG, 2000c. Results of the 3rd Quarter 2000 Monitoring Event and Domestic Well Sampling at 246 Ghilotti Avenue, Santa Rosa, December 11.
- PNEG, 2001a. Results of the 4th Quarter 2000 Monitoring Event and Domestic Well Sampling at 246 Ghilotti Avenue, Santa Rosa, February 23.
- PNEG, 2001b. Results of the 2nd Quarter 2001 Groundwater Monitoring and Sampling and Domestic Well Sampling Event at 246 Ghilotti Avenue, Santa Rosa, June 6.
- PNEG, 2001c. Results of the 3rd Quarter 2001 Groundwater Monitoring and Sampling and Domestic Well Sampling Event at 246 Ghilotti Avenue, Santa Rosa, September 7.
- PNEG, 2001d. Results of the 4th Quarter 2001 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, November 30.
- PNEG, 2002a. Results of the 1st Quarter 2002 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, March 20.
- PNEG, 2002b. Work Plan to Define the Lateral and Vertical Extent of MTBE Contamination- 246 Ghilotti Avenue, Santa Rosa, California, May 28.
- PNEG, 2002c. Results of the 2nd Quarter 2002 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, June 6.
- PNEG, 2002d. Results of the 3rd Quarter 2002 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, August 14.
- PNEG, 2002e. Results of the 4th Quarter 2002 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, November 13.
- PNEG, 2003a. Results of the 1st Quarter 2003 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, California, March 17.

- PNEG, 2003b. Results of the 2nd Quarter 2003 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, California, May 8.
- SCDHS, 2002. Work Plan approval from C. Ives, dated June 24.
- SCS, 2003a. Results of the 3rd Quarter 2003 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, California, August 13.
- SCS, 2003b. Results of the 4th Quarter 2003 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, California, November 20.
- SCS, 2004a. Results of the 1st Quarter 2004 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, California, January 29.
- SCS, 2004b. Results of the 2nd Quarter 2004 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, California, May 7.
- SCS, 2004c. Results of the 3rd Quarter 2004 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, California, August 9.
- SCS, 2004d. Results of the 4th Quarter 2004 Groundwater Monitoring and Sampling Event at 246 Ghilotti Avenue, Santa Rosa, California, December 29.

Distribution List File No. 01203312.00

Mr. Damon Calegari Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California 95403

Ms. Beth Lamb North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, California 95403

	(GROUNE	OWATER	FLOW I	LEGEND	•	
	Groundwater		t Contour	ldentifier Tag	Date	Est. Flow Direction	Gradient Slope
Flow Direct	tion ►	(Intervo	ıl = 0.1 ft)		4/6/04	S45°W	i = 0.002
ldentifier Tag	Date	Est. Flow Direction	Gradient Slope	(MM)	7/7/04	S65°W	i = 0.003
N	6/24/96	S10°W	i = 0.005	(NN)	11/11/04	N60°W	i = 0.003
0	12/20/96	N80°W	i = 0.003	00	2/11/05	SW	i = 0.002
P	4/18/97	S10°W	i = 0.005				
Q	9/11/97	S30°W	i = 0.006				
R	6/19/98	S48°W	i = 0.002				
S	3/3/99	S10°W	i = 0.002				
T	6/2/99	Due South	i = 0.008				
Ü	12/28/99	S55°W	i = 0.003				
V	3/23/00	N68°W	i = 0.03				
W	6/20/00	S55°W	i = 0.003				
\otimes	10/3/00	S35°W	i = 0.005				
Ŷ	1/9/01	N75°W	i = 0.002				
Z	4/10/01	S65°W	i = 0.003				
AA	7/11/01	West	i = 0.003				
BB	10/10/01	S75°W	i = 0.004				
CC	1/9/02	S20°W	i = 0.003				
(DD)	4/5/02	S50°W	i = 0.002				
ŒĒ	7/3/02	S75°W	i = 0.004				
FF	10/24/02	S40°W	i = 0.005				
GG	1/22/03	S30°W	i = 0.002				
HH	4/17/03	S45°W	i = 0.002				
	7/14/03	S75°W	i = 0.003				
\bigcirc	10/7/03	S55°W	i = 0.004				
(KK)	1/2/04	S80°W	i = 0.002				
ENVIRONMEN	NGINE	ANTS	O IECT TITLE:		AND GRADIENT FOR	R 2/11/05	scale: 1" = 30'
SANTA ROSA, CALIFORN PH. (707) 546–9461 PROJ. NO.: 3312.00	NIA 95403 FAX. (707) 544-5769		G	CHILOTTI CONSTRUC 246 GHILOTT SANTA ROSA,	I AVENUE		FIGURE NO.: 3 SHEET 2 OF 2

Key to Diagram and Tables 246 Ghilotti Avenue, Santa Rosa

TPH-g = Total petroleum hydrocarbons in the gasoline range

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

MTBE = Methyl tertiary butyl ether

Five Oxys = Five ether-based oxygenates [diisopropyl ether (DIPE), ethyl tertiary butyl

ether (ETBE), tert-amyl methyl ether (TAME), MTBE, and tert-butyl

alcohol (TBA)]

EDC = Ethylene dichloride 2

EDB = Ethylene dibromide 3

Pb Scavs = Lead scavengers (EDC, EDB)

mg/kg = Milligrams per kilogram

 μ g/L = Micrograms per liter

 2 EDC has been referred to as 1,2-dichloroethane (1,2-DCA) in previous reports.

³ EDB has been referred to as 1,2-dibromoethane in previous reports.

SCS ENGIN	IEERS	MTBE & Groundwater Elevation vs Time	DIAGRAM
3645 WESTWIND BO	DULEVARD	Ghilotti Construction Company	_
SANTA ROSA, CALIF	FORNIA	246 Ghilotti Avenue	A
PH: (707) 546-9461 F	-X: (707)544-5769	Santa Rosa, California	
Drawn By: KLC	File Name: MTBE-GW	Job Number: 01203312.00	DATE: 02/23/05

Table 1: Historical Soil Excavation, Stockpile and Groundwater Sample Analytical Results 246 Ghilotti Avenue, Santa Rosa

Sample ID	Date	TPH-g	TPH-d	Lead	В	T	E	X		
Sample ID	Date				mg/kg		-			
SW-1E	03/19/92	ND		5.3	ND	ND	ND	ND		
SW-1W	03/19/92	ND		5.3	ND	ND	ND	ND		
SW-2E	03/19/92		ND		ND	ND	ND	ND		
SW-2W	03/19/92		ND		ND	ND	ND	ND		
SW-3E	03/19/92		12		ND	ND	ND	ND		
SW-3W	03/19/92		10*		ND	ND	ND	ND		
SP-1	03/19/92	380**		18	ND	ND	ND	0.056		
SP-2	03/19/92		970		ND	0.11	0.08	0.43		
SP-3	03/19/92		1800		ND	ND	ND	ND		
FI-1	03/19/92	170**	1100	5.1	ND	ND	ND	0.12		
Groundwater			mg/L							
GW-1	3/19/92	14**	38	0.018	0.011	ND	0.0059	0.024		

^{*} The positive result for TPH-d appears to be a heavier hydrocarbon than diesel.

Table 2: Historical Excavation Soil Sample Results 246 Ghilotti Avenue, Santa Rosa

Cample ID	Data	TPH-g	TPH-d	Lead	В	T	E	X		
Sample ID	Date		mg/kg							
SW-1	10/01/92	ND	ND	4.5	ND	ND	ND	ND		
SW-2	10/01/92	ND	ND	4.1	ND	ND	ND	ND		
SW-3	10/01/92	ND	ND	6	ND	ND	ND	ND		
SW-4	10/01/92	ND	ND	4.1	ND	ND	ND	ND		
B-1	10/01/92	ND	ND	6.1	ND	ND	ND	ND		
B-2	10/01/92	ND	1.8	3.8	ND	ND	ND	ND		
B-3	10/07/92	1.8*	88	6.2	ND	ND	ND	ND		
B-4	10/07/92	ND	23	7.4	ND	ND	ND	ND		
B-5	10/07/92	ND	ND	4.9	ND	ND	ND	ND		
B-6	10/13/92	ND	ND	6.3	ND	ND	ND	ND		
B-7	10/13/92	ND	ND	6.9	ND	ND	ND	ND		
B-8	10/13/92	ND	ND	5.9	ND	ND	ND	ND		

^{*} The positive result for TPH-g appears to be a heavier hydrocarbon than gasoline.

Table 3: Soil Sample Results - Borings B-1 through B-3 (MW-1 through MW-3) 246 Ghilotti Avenue, Santa Rosa

Sample ID	Date	TPH-g	TPH-d	Lead	В	T	E	X			
Sample 1D	Date	mg/kg									
B-1-9.0		ND	ND	4.0	ND	ND	ND	ND			
B-2-8.0	11/09/92	ND	ND	4.8	ND	ND	ND	ND			
B-3-9.5		ND	ND	4.9	ND	ND	ND	ND			

ND = Not Detected

^{**} The positive result for TPH-g appears to be a heavier hydrocarbon than gasoline.

Table 4: Soil Analytical Results - Monitoring Wells - 2005 246 Ghilotti Avenue, Santa Rosa

ID	Doto	TPH-g	TPH-d	В	T	E	X	MTBE
ID	Date				mg/kg			
MW-04@5.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-04@10.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-04@15.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-04@20.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-05@5.5'	02/01/05	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-05@11.0'	02/01/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-05@15.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-06@5.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-06@10.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-06@15.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-07@6.5'		<1.0	NA**	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-07@11.0'*		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-07@15.5'	02/02/05	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-08@5.5'	02/02/03	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-08@10.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-08@15.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-09@5.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-09@11.0'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-09@16.0'	02/03/05	<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-10@6.0'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-10@10.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025
MW-10@15.5'		<1.0	< 5.0	< 0.005	< 0.005	< 0.005	< 0.0015	< 0.0025

^{*} Contained lead at a concentration of 3.6 mg/kg.

NA = Not Analyzed

^{**} Limited sample recovery.

Table 5: Groundwater Flow Direction and Gradient - 1996 to Present 246 Ghilotti Avenue, Santa Rosa

Well #	Date	Top of Casing Elevation	Depth to Groundwater	Water Level Elevation	Groundwater Flow Direction &
νν c Π <i>π</i>	Measured	(ft. > msl)	(feet)	(ft. > msl)	Gradient (i)
MW-1		99.48	7.42	92.06	
MW-2	06/24/96	99.77	7.67	92.1	S10°W
MW-3	00,2.,,0	99.38	7.58	91.8	i = 0.005
MW-1		99.48	10.00	89.48	
MW-2	12/20/96	99.77	10.5	89.27	N80°W
MW-3	12/20/50	99.38	10.1	89.28	i = 0.003
MW-1		99.48	7.19	92.29	
MW-2	04/18/97	99.77	7.41	92.36	S10°W
MW-3	0 1/10/57	99.38	7.34	92.04	i = 0.005
MW-1		99.48	13.29	86.19	
MW-2	09/11/97	99.77	13.65	86.12	- S30°W
MW-3	05/11/57	99.38	13.57	85.81	i = 0.006
MW-1		99.48	5.28	94.2	
MW-2	06/19/98	99.77	5.62	94.15	S48°W
MW-3	00,17,70	99.38	5.3	94.08	i = 0.002
MW-1		99.48	3.35	96.13	<u> </u>
MW-2	03/03/99	99.77	3.57	96.2	S10°W
MW-3	03/03/99	99.38	3.33	96.05	i = 0.002
MW-1		99.48	6.79	92.69	<u> </u>
MW-2	06/02/99	99.48	6.91	92.86	Due South
MW-3	00/02/99	99.77	7.04	92.34	i = 0.008
MW-1		99.48	12.73	86.75	
MW-2	12/28/99	99.48	13.16	86.61	S55°W
MW-3	12/26/99	99.77	12.86	86.52	i = 0.003
					<u> </u>
MW-1 MW-2	03/23/00	99.48 99.77	4.85	94.63 94.44	N68°W
MW-3	03/23/00	99.77	5.33 4.91	94.44	i = 0.03
		99.48			
MW-1 MW-2	06/20/00	99.48	8.44 8.84	91.04	S55°W
MW-3	00/20/00	99.77	8.57	90.93	i = 0.003
					<u> </u>
MW-1 MW-2	10/03/00	99.48 99.77	13.6 13.98	85.88 85.79	S35°W
MW-3	10/03/00	99.77	13.87	85.51	i = 0.005
		99.48	13.31	86.17	<u> </u>
MW-1 MW-2	01/09/01	99.48	13.71	86.17	N75°W
MW-3	01/09/01	99.77	13.71	86.07	i = 0.002
	<u>I</u>	99.38	6.79	92.69	<u> </u>
MW-1 MW-2	04/10/01	99.48	7.22	92.55	S65°W
MW-3	04/10/01	99.77	6.92	92.33	i = 0.003
		l .		88.09	
MW-1 MW-2	07/11/01	99.48 99.77	11.39 11.87	88.09 87.90	West
MW-3	07/11/01	99.77	11.50	87.90 87.88	i = 0.003
MW-1	<u> </u>	99.48	14.78	84.70	<u> </u>
MW-1 MW-2	10/10/01	99.48	15.24	84.70	S75°W
MW-3	10/10/01	99.77	14.93	84.45	i = 0.004
	<u> </u>				
MW-1	01/09/02	99.48 99.77	3.75	95.73	S20°W
MW-2	01/09/02		4.06	95.71	i = 0.003
MW-3]	99.38	3.85	95.53	

Table 5: Groundwater Flow Direction and Gradient - 1996 to Present 246 Ghilotti Avenue, Santa Rosa

	-	- 46 A A	Depth to	Water Level	Groundwater Flow
Well #	Date	Top of Casing Elevation	Groundwater	Elevation	Direction &
	Measured	(ft. > msl)	(feet)	(ft. > msl)	Gradient (i)
MW-1		99.48	5.09	94.39	CEOOW
MW-2	04/05/02	99.77	5.44	94.33	S50°W
MW-3		99.38	5.15	94.23	i = 0.002
MW-1		99.48	9.25	90.23	S75°W
MW-2	07/03/02	99.77	9.74	90.03	
MW-3		99.38	9.44	89.94	i = 0.004
MW-1		99.48	13.70	85.78	S40°W
MW-2	10/24/02	99.77	14.13	85.64	i = 0.005
MW-3		99.38	14.01	85.37	1 – 0.003
MW-1		99.48	4.65	94.83	S30°W
MW-2	01/22/03	99.77	4.97	94.80	i = 0.002
MW-3		99.38	4.69	94.69	1 - 0.002
MW-1		99.48	5.20	94.28	S45°W
MW-2	04/17/03	99.77	5.55	94.22	i = 0.002
MW-3		99.38	5.25	94.13	1 – 0.002
MW-1		99.48	8.44	91.04	S75°W
MW-2	07/14/03	99.77	8.90	90.87	i = 0.003
MW-3		99.38	8.59	90.79	1 – 0.003
MW-1		99.48	11.75	87.73	S55°W
MW-2	10/07/03	99.77	12.01	87.76	i = 0.004
MW-3		99.38	12.21	87.17	1 – 0.004
MW-1		99.48	6.68	92.80	S80°W
MW-2	01/02/04	99.77	7.08	92.69	i = 0.002
MW-3		99.38	6.72	92.66	1-0.002
MW-1		99.48	5.21	94.27	S45°W
MW-2	04/06/04	99.77	5.58	94.19	i = 0.002
MW-3		99.38	5.32	94.06	1 – 0.002
MW-1		99.48	9.71	89.77	S65°W
MW-2	07/07/04	99.77	10.18	89.59	i = 0.003
MW-3		99.38	9.92	89.46	1 0.003
MW-1		99.48	11.71	87.77	N60°W
MW-2	11/23/04	99.77	12.17	87.60	i = 0.003
MW-3		99.38	11.73	87.65	1 0.003
MW-1		99.48	4.90	94.58	
MW-2		99.77	5.21	94.56	
MW-3		99.38	4.86	94.52	
MW-04		98.31	3.87	94.44	
MW-05	02/11/05*	100.20	5.52	94.68	SW
MW-06		100.95	6.23	94.72	i = 0.002
MW-07		100.17	5.57	94.60	
MW-08	,	98.37	3.89	94.48	
MW-09	,	98.46	4.02	94.44	_
MW-10		98.04	3.73	94.31	

Note: Groundwater flow direction is rounded to the nearest 5° beginning in 1996 except for the 06/19/98 and 03/23/00 calculations.

^{*} MW-04 through MW-10 were surveyed to msl on March 9, 2005.

Table 6: Domestic Well Analytical Results 246 Ghilotti Avenue, Santa Rosa

ID	Date	TPH-g	TPH-d	В	Т	E	X	MTBE*	OTHER OXY'S*	
	Sampled	μg/L								
	07/21/98	< 50	NA	< 50	< 0.3	< 0.5	< 0.5	3.4	NA	
	08/05/99	< 50	NA	< 50	< 0.3	< 0.5	< 0.5	3	NA	
	12/28/99	< 50	NA	< 50	< 0.3	< 0.5	< 0.5	1	<1.0	
	03/23/00	< 50	< 50	< 50	< 0.3	< 0.5	< 0.5	1.5	<1.0	
	06/20/00	< 50	< 50	< 50	< 0.3	< 0.5	< 0.5	<1.0	<1.0	
	10/03/00	NA	NA	NA	NA	NA	NA	1.5	<1.0	
	01/09/01	NA	NA	NA	NA	NA	NA	1.1	<1.0	
	04/10/01	NA	NA	NA	NA	NA	NA	<1.0	<1.0	
	07/10/01	NA	NA	NA	NA	NA	NA	<1.0	<1.0	
	10/10/01	NA	NA	NA	NA	NA	NA	<1.0	NA	
	02/14/02	NA	NA	NA	NA	NA	NA	<1.0	NA	
DW-1	04/05/02	NA	NA	NA	NA	NA	NA	0.59	<1.0	
	07/03/02	NA	NA	NA	NA	NA	NA	< 0.5	<1.0	
	10/24/02	NA	NA	NA	NA	NA	NA	< 0.5	<1.0	
	02/14/03	NA	NA	NA	NA	NA	NA	<1.0	<1.0	
	04/17/03	NA	NA	NA	NA	NA	NA	<1.0	<1.0	
	07/14/03	NA	NA	NA	NA	NA	NA	<1.0	<1.0	
	10/07/03	NA	NA	NA	NA	NA	NA	<1.0	<1.0	
	01/02/04	NA	NA	NA	NA	NA	NA	<1.0	<1.0	
	04/06/04	NA	NA	NA	NA	NA	NA	<1.0	<1.0	
	07/07/04	NA	NA	NA	NA	NA	NA	<1.0	<1.0	
	11/23/04	NA	NA	NA	NA	NA	NA	<1.0	<1.0	
	02/11/05	NA	NA	NA	NA	NA	NA	<1.0	<1.0	

Note:

^{*} Analysis for MTBE by EPA Method 8020; Analysis for 5 oxy's (including MTBE) by EPA Method 8260B; <25 μ g/L For TBA.

Table 7: Groundwater Analytical Results - Monitoring Wells 246 Ghilotti Avenue, Santa Rosa

ID	Date Sampled	ТРН-g	TPH-d	В	T	E	X	MTBE*	OTHER OXY'S
	-				, ,	<u> </u>			
	06/24/96	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	NA	NA
	12/20/96	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	140	NA
	04/18/97	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	130	NA
	09/11/97	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	110	NA
	06/19/98	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	96	<1.0
	03/03/99	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	800	NA
	03/24/99	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	360	NA
	03/26/99	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	250	NA
	06/02/99	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	230	NA
	12/28/99	< 50	NA	< 0.3	0.66	< 0.5	< 0.5	230	<1.0
	03/23/00	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	250	<1.0
	06/20/00	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	150	<1.0
	10/03/00	NA	NA	NA	NA	NA	NA	130	<1.0
	01/09/01	NA	NA	NA	NA	NA	NA	210	<1.0
MW-1	04/10/01	NA	NA	NA	NA	NA	NA	150	NA
IVI VV - I	07/10/01	NA	NA	NA	NA	NA	NA	310	NA
	10/10/01	NA	NA	NA	NA	NA	NA	140	NA
	01/09/02	NA	NA	NA	NA	NA	NA	180	NA
	04/05/02	NA	NA	NA	NA	NA	NA	140	<1.0
	07/03/02	NA	NA	NA	NA	NA	NA	94	<1.0
	10/24/02	NA	NA	NA	NA	NA	NA	75	<1.0
	01/24/03	NA	NA	NA	NA	NA	NA	71	<1.0
	04/17/03	NA	NA	NA	NA	NA	NA	61	<1.0
	07/14/03	NA	NA	NA	NA	NA	NA	63	<1.0
	10/07/03	NA	NA	NA	NA	NA	NA	31	<1.0
	01/02/04	NA	NA	NA	NA	NA	NA	20	<1.0
	04/06/04	NA	NA	NA	NA	NA	NA	33	<1.0
	07/07/04	NA	NA	NA	NA	NA	NA	27	<1.0
	11/23/04	NA	NA	NA	NA	NA	NA	22	NA
	02/11/05	NA	NA	NA	NA	NA	NA	44	<1.0

Table 7: Groundwater Analytical Results - Monitoring Wells 246 Ghilotti Avenue, Santa Rosa

ID	Date Sampled	TPH-g	TPH-d	В	Т	E	X	MTBE*	OTHER OXY'S
	Sampleu				με	g/L			
	06/24/96	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	NA	NA
	12/20/96	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	37	NA
	04/18/97	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	54	NA
	09/11/97	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	72	NA
	06/19/98	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	15	<1.0
	03/03/99	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	42	NA
	06/02/99	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	43	NA
	12/28/99	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	45	<1.0
	03/23/00	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	72	<1.0
	06/20/00	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	76	<1.0
	10/03/00	NA	NA	NA	NA	NA	NA	52	<1.0
	01/09/01	NA	NA	NA	NA	NA	NA	93	<1.0
	04/10/01	NA	NA	NA	NA	NA	NA	120	NA
MW-2	07/10/01	NA	NA	NA	NA	NA	NA	140	NA
101 00 -2	10/10/01	NA	NA	NA	NA	NA	NA	130	NA
	01/09/02	NA	NA	NA	NA	NA	NA	86	NA
	04/05/02	NA	NA	NA	NA	NA	NA	80	<1.0
	07/03/02	NA	NA	NA	NA	NA	NA	120	<1.0
	10/24/02	NA	NA	NA	NA	NA	NA	100	<1.0
	01/24/03	NA	NA	NA	NA	NA	NA	80	<1.0
	04/17/03	NA	NA	NA	NA	NA	NA	82	<1.0
	07/14/03	NA	NA	NA	NA	NA	NA	140	<1.0
	10/07/03	NA	NA	NA	NA	NA	NA	51	<1.0
	01/02/04	NA	NA	NA	NA	NA	NA	54	<1.0
	04/06/04	NA	NA	NA	NA	NA	NA	30	<1.0
	07/07/04	NA	NA	NA	NA	NA	NA	27	<1.0
	11/23/04	NA	NA	NA	NA	NA	NA	26	<1.0
	02/11/05	NA	NA	NA	NA	NA	NA	28	<1.0

Table 7: Groundwater Analytical Results - Monitoring Wells 246 Ghilotti Avenue, Santa Rosa

ID	Date	TPH-g	TPH-d	В	Т	E	X	MTBE*	OTHER OXY'S	
	Sampled				με	g/L				
	06/24/96	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	NA	NA	
	12/20/96	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	32	NA	
	04/18/97	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	31	NA	
	09/11/97	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	39	NA	
	06/19/98	< 50	NA	< 0.3	< 0.3	< 0.5	< 0.5	53	<1.0	
	03/03/99	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	20	NA	
	06/02/99	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	16	NA	
	12/28/99	< 50	NA	< 0.3	0.45	< 0.5	< 0.5	35	<1.0	
	03/23/00	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	14	<1.0	
	06/20/00	< 50	< 50	< 0.3	< 0.3	< 0.5	< 0.5	12	<1.0	
	10/03/00	NA	NA	NA	NA	NA	NA	9.8	<1.0	
	01/09/01	NA	NA	NA	NA	NA	NA	63	<1.0	
	04/10/01	NA	NA	NA	NA	NA	NA	47	NA	
MW-3	07/10/01	NA	NA	NA	NA	NA	NA	76	NA	
1V1 VV -3	10/10/01	NA	NA	NA	NA	NA	NA	67	NA	
	01/09/02	NA	NA	NA	NA	NA	NA	38	NA	
	04/05/02	NA	NA	NA	NA	NA	NA	44	<1.0	
	07/03/02	NA	NA	NA	NA	NA	NA	55	<1.0	
	10/24/02	NA	NA	NA	NA	NA	NA	79	<1.0	
	01/24/03	NA	NA	NA	NA	NA	NA	40	<1.0	
	04/17/03	NA	NA	NA	NA	NA	NA	65	<1.0	
	07/14/03	NA	NA	NA	NA	NA	NA	98	<1.0	
	10/07/03	NA	NA	NA	NA	NA	NA	76	<1.0	
	01/02/04	NA	NA	NA	NA	NA	NA	46	<1.0	
	04/06/04	NA	NA	NA	NA	NA	NA	49	<1.0	
	07/07/04	NA	NA	NA	NA	NA	NA	74	<1.0	
	11/23/04	NA	NA	NA	NA	NA	NA	90	<1.0	
	02/11/05	NA	NA	NA	NA	NA	NA	54	<1.0	
MW-04	02/11/05	< 50	NA	<1.0	<1.0	<1.0	1.1	1.9	<1.0	
MW-05	02/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
MW-06	02/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
MW-07	02/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	6.9	<1.0	
MW-08	02/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
MW-09	02/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	3.2	<1.0	
MW-10	02/11/05	< 50	NA	<1.0	<1.0	<1.0	<1.0	20	<1.0	

Note: *Analysis for MTBE by EPA Method 8020; Analysis for 5 oxy's (including MTBE) by EPA Method 8260B; <25 µg/L For TBA.

Table 8: CPT Groundwater Analytical Results 246 Ghilotti Avenue, Santa Rosa

Sample ID	Date	TPH-g	TPH-d	MTBE	В	Т	E	X	OTHER OXY'S*
					ug	g/L			
CPT-01@38.0'	03/02/05	< 50	< 50	2.8*	<1.0	<1.0	<1.0	<1.0	<1.0
CPT-01@82.0'	03/02/05	< 50	< 50	<1.0*	<1.0	<1.0	<1.0	<1.0	<1.0

Note:

^{*} Analysis for MTBE by EPA Method 8020; Analysis for 5 oxy's (including MTBE) by EPA Method 8260B; $<25 \mu g/L$ For TBA.

APPENDIX A

UNIFIED SOIL CLASSIFICATION LEGEND BORINGS LOGS LEGEND DWR 188 FORMS

GENE	RAL SOIL CAT	EGORIES	-	BOLS	TYPICAL SOIL TYPES				
		Clean Gravel	X	GW	Well Graded Gravels, Gravel - Sand mixtures				
ω ω	Gravel More than half of	with little or no fines		GP	Poorly Graded Gravels, Gravel - Sand mixtures				
ED SOILS is larger sieve	coarse fraction is larger than No. 4 sieve size	Gravel with		GM	Silty Gravels, Poorly Graded; Gravel - Sand - Silt Mixtures				
OARSE GRAINED SOIL More than half is larger than no. 200 sieve		more than 12% fines		GC	Clayey Gravels, Poorly Graded; Gravel - Sand - Clay Mixtures				
ARSE GRA	Sand	Clean Sand with little or	0.00	SW	Well Graded Sands, Gravelly Sands				
COARSE More th	More than half of	no fines		SP	Poorly Graded Sands, Gravelly Sands				
Ö	coarse fraction is smaller than No. 4 sieve size	Sand with more than		SM	Silty Sands, Poorly Graded; Sand - Silt Mixtures				
		12% fines		SC	Clayey Sands, Poorly Graded; Sand - Clay Mixtures				
	Silt and Clay			ML	Inorganic Silts and Very Fine Sands, Rock Flour, Silty or Clayey Fine Sands or Clayey Silts with Slight Plasticity				
SOILS s smalle sieve	Liquid Limit Less			CL	Inorganic Clays of Low to Medium Plasticity, Gravelly Clays, Sandy Clays, Silty Clays, Lean Clays				
INED Salf is s	than 50%			OL	Organic Silts and Organic Silty Clays of Low Plasticity				
GRAI nan h	Silt and Clay			МН	Inorganic Silts, Micaceous or Diatomaceous Fine Sandy or Silty Soils, Elastic Silts				
FINE fore th	Liquid Limit Greater			СН	Inorganic Clays of High Plasticity, Fat Clays				
2	than 50%			ОН	Organic Clays of Medium to High Plasticity				
	Highly Organic So	ils	7 77 7	PT	Peat and Other Highly Organic Soils				
	Bedrock			BR	Bedrock				
	Aggregate Base		X	В	Mixed Fill				
	Asphalt		X	Α	Asphalt				
	Concrete			С	Concrete				
	mple submitted for chen	·	CMS SPT CBS GRA	= Stan	Modified Split Spoon dard Penetration Test ☐ First Identified Free Water cinuous Barrel Sample ☐ n.a. = not applicable				

SCS ENGINEERS

Environmental Consultants 3645 Westwind Bouevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769

UNIFIED SOIL CLASSIFICATION SYSTEM CHART and BORING LOG LEGEND

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00 Figure

Appendix A A-1 1 of 1

Da	te (s	tart, er	nd):	2/1	/05 - 2	2/1/0	5			Bor	ing I	No.	Bor	ng L	ocation: See site plan	
	•	Time (,					30			W-(Ū	·	
Lo	gged	d By:			-						•	, ,			fied Soil Classification System (USCS)	
		ed By:													nd and information not noted.	
	_	Contra Name					rilling								stalled: Y⊠ N□ if no, boring backfilled with:	
		Metho					Aug						•		nt	ps∟
Sa	mpli	ng Met	thod:	CN	1SS								Aı	uger	Depth, ft: 20.5 Total Depth, ft: 21.5	
	mmotes:	er weig	jht / f	all:_	140 lb	s / 30) inch	1								
INC	ies.															
	ered															
	Inches Recovered	.⊑	Sampler Type	vels			tion	Elevation	Feet	go.						
ole	ss Re	9/8	oler -	r Le	mdd		olora	Eleva	h ii	hicL	% 	%		%	Lithologic Description and Drilling Comments:	
Sample	nche	Blows / 6	Samp	Water Levels	PID (ppm)	Odor	Discoloration		Depth in Feet	Graphic Log	Gravel %	Sand %	Silt %	Clay		
°			"		_	A	<u> </u>	98.8 98.5-	_				"		ASPHALT: over base rock.	
								90.5			Į					
								97.8-	1-	7.7.7					SANDY CLAY (CL): dark gray, very fine to fine graine	 ed
										-///					sand, trace fine gravel, moist.	
									2-							
									3-							
															Moderate to light brown.	
									4-							
$\overline{}$	6	5	1		0				5-			30	30	40		
$\langle \cdot \rangle$			CMSS							-	Т	30	30	40		
	6	9	CM			No	No	92.8-	6-		20	30	20	30	SANDY CLAY with Gravel (CL): brown, very fine to	
<u> </u>	6	13								-	20	30	20	30	medium grained sand, fine gravel, rounded, moist to w	
									7-							
										•/•						
									8-							
								89.8-	9-						CLAY with Sand (CL): brown, very fine to fine grains	ed
										-	-				sand, moist to wet.	
X			-		0				10-	- ////		15	35	50		
X	6	3	SS													
	6	4	CMSS						11-	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.		15	35	50		
X	6	6		Δ								15	35	50		
	S	C S	E	N	G I	Ν	ΕE	R S		BC	R	NC	3 L	OC	6 MW-04	
		onment													Company Figure:	
(3645	Westw	vind E	Boue	vard					246	Ghi	lotti .	Avei	nue	Appendix A	Α
		a Rosa, 707-546					-5769	9		San Job	ta R Nur	osa, nher	, Cal r: 01	itorn 203	iia MW-04 312.00 1 of 2	
				• • •			٥. ٥٠	-		335				_55	1012	

Sample	Inches Recovered	Blows / 6 in	Sampler Type	Water Levels	PID (ppm)	Odor	Discoloration	Elevation	Depth in Feet	Graphic Log	Gravel %	Sand %	Silt %	Clay %	Lithologic Description and Drilling Comments:
								86.3-	13-						SANDY SILT (ML): brown, very fine to fine grained sand, wet.
									14-						
X	6	3	တ္တ						15 -			30	50	20	
\times	6	4 6	CMSS						16-			30	50 50	20	
						No	No		17-						
								80.8-	18-						SILTY SAND (SM): brown, very fine to fine grained sand, wet.
									19-						
X	6	3	SS						20-			50	40	10	
\times	6	10 20	CMSS				V	77.8- 77.3-	21-			50 85	40 10	10 5	SAND with Silt (SP-SM): brown, fine to medium grained sand, wet.
									22-						TOTAL DEPTH = 21.5 FEET
19/05									23-	-					
SA.GDT 04/									24-	-					
S-SANTA RC									25-						
2.00.GPJ SC									26-						
.0G 0120331									27-	-					
ROSA BORING LOG 01203312.00.GPJ SCS-SANTA ROSA GDT 04/19/05		C S				N I	E E	R S	Π						6 MW-04 Company

Environmental Consultants 3645 Westwind Bouevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769 Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Appendix A MW-04 2 of 2

Dri Lo	illing gged	start, en Time (d By: ed By:	start,	enc	d) 10):45 -		30			ring f		See	e Unit	ocation: See site plan fied Soil Classification System (USCS) nd and information not noted.	
Dri Dri Sa Ha	iller's illing mpli	Contra Name Methoon ng Met er weig	: <u>Ric</u> d: <u>8-i</u> hod:	k So in Ho CM	chnied ollow-9 ISS	er Stem	Aug	er					C	emer	stalled: Y⊠ N□ if no, boring backfilled with: at □ Bentonite: Cement □ Grout □ Chips Depth, ft: 20.5 Total Depth, ft: 21.5	s
Sample	Inches Recovered	Blows / 6 in	Sampler Type	Water Levels	PID (ppm)	Odor	Discoloration	8.00 Elevation	Depth in Feet	Graphic Log	Gravel %	Sand %	Silt %	Clay %	Lithologic Description and Drilling Comments:	
								99.8-	1- 2- 3-						GRAVEL BASE SANDY CLAY (CL): dark gray, very fine to fine grained sand, trace fine gravel, moist.	i
S0.61 to 130.49	6 6	3 8 12	CMSS		0	No	No	95.6- 94.5-	4- 5- 6- 7- 8-		T	10 20	30 30 60	60 70 20	CLAY (CL): brown, silty, moist. SILT with Sand (ML): light brown, very fine to fine grained sand, minor clay, moist.	
	6 6	6 24 24	CMSS	Σ	0			89.8-	9- 10- 11-	-	5 15 50	20 20 20	60 50 20	15 15 10	With minor gravel. GRAVEL with Silt and Sand (GP-GM): brown, fine gravel, fine to coarse grained sand, moist to wet.	
	Envir 3645 Santa	C S conment Westwa Rosa, 707-546	tal Co ind E Calif	onsul Boue Fornia	Itants vard a 9540)3		R S		Ghil 246 San	lotti (Ghil ıta R	Consolotti A	struc Aver Cal	tion nue liforn	6 MW-05 Company ia Appendix A MW-05 312.00 1 of 2	

3645 Westwind Bouevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Appendix A MW-05 2 of 2

Dr Lo	illing gge	start, en Time (d By: ed By:	start,	end	d) 13	3:45		15			ring I		See	e Unit	ocation: See site plan fied Soil Classification System (USCS) nd and information not noted.	
Dri Dr Sa Ha	iller's illing ımpl	Contra Name Metholing Met er weig	: <u>Ric</u> d: <u>8-i</u> hod:	k So n Ho CN	chnied ollow-9 ISS	ler Stem	Aug	er					C	emer	stalled: Y⊠ N□ if no, boring backfilled with: It □ Bentonite: Cement □ Grout □ Chips Depth, ft: <u>20.5</u> Total Depth, ft: <u>21.5</u>	;
Sample	Inches Recovered	Blows / 6 in	Sampler Type	Water Levels	PID (ppm)	Odor	- Discoloration	101 F. Elevation	Depth in Feet	Graphic Log	Gravel %	Sand %	Silt %	Clay %	Lithologic Description and Drilling Comments:	
							A	100.4-	1- 2-						SANDY CLAY: dark gray, very fine to fine grained sand, trace fine gravel, moist.	
									3-							
X	6 6	3 3 4	CMSS		0	No	No		5- 6-		T 20 T	30 20 40	30 20 20	40 40 40	~0.2' thick gravelly clay layer.	
SCS-SANIA ROSA.GDI 04/19/05								92.4-	8- 9-						GRAVEL with Silt and Sand (GP-GM): brown, fine ar	
01203312.00.GPJ SCS-SA	1 6	8 9	CMSS	Ā	0				10-		40 40	25 25	25 25	10	coarse gravel and fine to coarse grained sand, wet.	
	6 S	12 C S		N	GΙ	N	E E	R S		BC	PRI	25 N (25 3 L	10 OC	6 MW-06	_
SANTA	3645 Sant	ronment Westw a Rosa, 707-546	ind E Calif	Boue Fornia	vard a 9540		-576	9		246 San	Ghi ta R	lotti . losa,	Aver , Cal	nue iforn	Company ia Appendix A MW-06 1 of 2	

Environmental Consultants 3645 Westwind Bouevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769 Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Appendix A MW-06 2 of 2

Dri	ling	tart, en	start,	enc	30 (b	3:30 -		00			ring I				ocation: See site plan
_	-	l By: ed By:	Siep	ilen	ı MIUÜ	lel									fied Soil Classification System (USCS) and and information not noted.
Dril Dril Sal Ha	ler's ling npli	Contra Name Methong Meter weig	: <u>Ric</u> d: <u>8-i</u> hod:	k So n Ho CM	chnied ollow-9 ISS	ler Stem	Aug	er					С	emer	stalled: Y⊠ N□ if no, boring backfilled with: nt □ Bentonite: Cement □ Grout □ Chips Depth, ft: 20.5 Total Depth, ft: 21.5
Sample	Inches Recovered	Blows / 6 in	Sampler Type	Water Levels	PID (ppm)	Odor	Discoloration	9.00 Elevation	Depth in Feet	Graphic Log	Gravel %	Sand %	Silt %	Clay %	Lithologic Description and Drilling Comments:
						A	A	100.4-							ASPHALT: over base rock.
								99.6-	1- 2-						SANDY SILT with Gravel (ML): dark gray, moist, (Fill).
	0 0 5	3 4 7	CMSS		0	No	No	96.6-	3·4·4·5·6·6·		5	30	30	35	SANDY CLAY (CL): dark brown, very fine to fine grained sand, minor fine gravel, moist.
								92.6-	8-						SILTY GRAVEL (GM): brown to gray, fine and coarse gravel and fine to coarse grained sand, moist to wet.
					0				10 [.]						
\nearrow	6	17 11	CMSS	Ā							40	30 25	30	5	
/ \	6	13	5					89.4-	11 ⁻	- T -					CLAY (CL): brown, moist.
	S	C S	E	N	GΙ	N	E E	R S		BC	RI	NC	3 L	OC	6 MW-07
3	645 Santa	onment Westw a Rosa, 707-546	ind E Calif	Boue ornia	vard a 9540		-5769	9		246 San	Ghi ta R	lotti . losa,	Aveı , Ca	nue liforn	Company Appendix A MW-07 312.00 1 of 2

Sample	Inches Recovered	Blows / 6 in	Sampler Type	Water Levels	PID (ppm)	Odor	Discoloration	Elevation	Depth in Feet	Graphic Log	Gravel %	Sand %	Silt %	Clay %	Lithologic Description and Drilling Comments:
								87.6-	- 13- - 14-						SANDY SILT (ML): brown, very fine to fine grained sand, moist to wet, clayey.
	6	3	CMSS		0				- 15- - 16-			30	40	30	
×	6	4				No	No		- 17- -			30	40	30	
								82.6-	18- - 19- -						SILTY SAND (SM): brown, very fine to fine grained sand, minor clay, wet.
X	6 6	3 3 4	CMSS		0		•	79.1-	20-			50 50 50	40 40 40	10 10 10	
J5									22-						TOTAL DEPTH = 21.5 FEET
IA ROSA.GDI 04/19/(24- - 25-						
312.00.GPJ SCS-SAN									26- 26-						
A KOSA BOKING LOG 07203372.00.GPJ SCS-SANTA KOSA.GDT 04/19/05	S	C S	Е	N	GΙ	N I	E E	R S	27-	BC	PRI	NC	3 L	OŒ	6 MW-07

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Appendix A MW-07 2 of 2

Da	te (s	tart, er	nd):	2/2	2/05 - 2	2/2/0	5			Bor	ring I	No.	Bor	ing L	ocation: Ghilotti Avenue	
	•	Time (,					00		M۱	W-(80				
		d By:	Step	ohen	Knüt	tel					'				fied Soil Classification System (USC	S)
Ch	ecke	ed By:											for	Lege	nd and information not noted.	
	_	Contra					rilling	ı, Inc.					M	W In	stalled: Y \boxtimes N \square if no, boring ba	ckfilled with:
		Name					Λιια						C	emer	nt 🗌 Bentonite: Cement 🗌 Gı	rout 🗌 Chips 🗆
		Metho ng Met				Sterri	Aug	ЕІ					Αı	uger	Depth, ft: 20.5 Total Depth,	ft: 21.5
	-	er weig				s / 30) inch	1								
	tes:															
	-				<u> </u>	1				T						
	Inches Recovered		a)					ا ر								
	eco	. <u>⊑</u>	Sampler Type	Water Levels	ڪ		Discoloration	Elevation	Depth in Feet	Log						
ple	es R	9 / g	pler	ır Le	udd)		olora	Elev	ri Li	hic	el %	%		%	Lithologic Description and Drilling	Comments:
Sample	nche	Blows / 6	Sam	Nate	PID (ppm)	Odor	Disc	00.7)ept	Graphic Log	Gravel %	Sand %	Silt %	Clay		
, ,			0,	_		A	<u> </u>	98.7 98.5-		Ň		0,	0,		ASPHALT: over base rock.	
								97.7-	1-						SANDY CLAY (CL): brown, fine to me	dium grained
															sand, moist.	didiri grained
									,							
									2-							
									3-							
									4-							
									_							
\times	6	5			0				5-			30	20	50		
	6	9	CMSS									30	30	40		
\/			S			No	No	92.7-	6-			30	40	30	SANDY SILT (ML): brown, very fine to	fine grained
\triangle	6	11											10		sand, moist, clayey.	3
									7-							
									8-							
								90.2-							SANDY CLAY (CL): brown, very fine to	 o fine grained
									9-						sand, moist.	-
					0				10							
X	6	5			0				10-			30	30	40		
	6	5	CMSS	Ā					-			30	30	40	Wet.	
\bigvee			S					87.7-	11-			30	40	30	SANDY SILT (ML): brown, very fine to	fine grained
\triangle	6	6	-							4111					sand, wet, clayey.	-
									<u> </u>							
	S	C S	E	N	GΙ	N	E E	R S		BC	RI	NC	3 L	OC	9 MW-08	
		onment							_	Ghil	otti (Cons	struc	ction	Company	Figure:
;	3645	Westw	ind E	Boue	vard					246	Ghi	lotti .	Avei	nue		Appendix A
		a Rosa, 707-546					-5760	a		San	ta R	losa,	, Cal ~ ∩1	I SUS	ia 312.00	MW-08 1 of 2
	11	. 01-040	J- J- U	, i F	un. 10	, -J44	-0108	,		JUD	inuí	וואכו	. U	- LU J	012.00	1 01 2

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Appendix A MW-08 2 of 2

Da	te (s	start, er	nd):	2/3	3/05 - 2	2/3/0	5			Воі	ring I	No.	Bor	ng L	ocation: Ghilotti Avenue
	_	Time (d By:			-		- 15:0	00		M۱	W-()9	0		6-d 0-il 0 i6tion 0,t (11000)
-		ed By:	Olop	JI ICI	ritiuu	lCi									fied Soil Classification System (USCS) and and information not noted.
		Contra					Prilling	g, Inc.					М	W In	stalled: Y⊠ N□ if no, boring backfilled with:
		Name Metho					ι Διια	er					C	emer	nt Bentonite: Cement Grout Chip
		ng Met				Oten	i Aug	CI					Αı	uger	Depth, ft: 20.5 Total Depth, ft: 21.5
	mm tes:	er weig	jht / fa	all:_	140 lb	s / 30	0 inch	<u>1</u>							
	red														
	Inches Recovered	.⊑	Гуре	vels			tion	ation	-eet	go.					
ple	es Re	Blows / 6 in	Sampler Type	Water Levels	PID (ppm)	_	Discoloration	Elevation	Depth in Feet	Graphic Log	Gravel %	% p	%	%	Lithologic Description and Drilling Comments:
Sample	Inch	Blow	Sam	Wat	PID	Odor	Disc	98.7	Dep	Grap	Gra	Sand %	Silt %	Clay	
						A	A	98.5-							ASPHALT: over base rock.
								97.7-	1-						SANDY CLAY (CL): brown, very fine to fine grained sand, moist.
									2-						
									3-						
								94.7-	4-						GRAVEL with Silt and Sand (GW-GM): brown tp yellowish brown, fine and coarse gravel, fine to coarse
					0				5-						grained sand, moist.
X	6	9	က္ခ								40	30	20	10	
	6	18	CMSS			 No	 No		6-		40	30	20	10	
<u>X</u>	6	28	-								40	30	20	10	
									7-						
									8-						
								90.2-							SAND with Gravel (SW): brown, fine to coarse graine
									9-	a .					sand and fine and coarse gravel, minor silt, wet.
										000					
$\overline{}$	0	19		Ā	0				10-	0.0					
\bigcirc	2	19	CMSS							0.0					Wet.
$/ \setminus$	6	6	S						11-	0 0 0	30	50	15	5	
										0.0					
	S	C S	E	N	GΙ	N	ΕE	R S		BC	RI	NC	G L	OC	6 MW-09
		onmen								Ghil	lotti (Cons	struc	tion	Company Figure:
		Westwa Rosa,				03				246 San	ıta R	osa,	, Cal	iforn	
F	Ph.: '	707-546	6-946	1 F	ax: 70	7-544	1-576	9							312.00 1 of 2

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Appendix A MW-09 2 of 2

Da	ite (s	tart, er	nd):	2/3	3/05 - 2	2/3/0	5			Boı	ing I	No.	Bor	ing L	ocation: Ghilotti Avenue	
		Time (15		M۱	W-'	10				
		d By:	Step	ohen	ı Knüt	tel					•	. •			ried Soil Classification System (USCS)	
Cr	necke	ed By:											for	Lege	nd and information not noted.	
Dr	illing	Contra	actor:	Cle	ear He	art D	rilling	g, Inc.					М	W In	stalled: $Y \boxtimes N \square$ if no, boring backfilled with:	
		Name											С	emer	ıt ☐ Bentonite: Cement ☐ Grout ☐ Chip	s
						Stem	ı Aug	er					A	uger	Depth, ft: 21.5 Total Depth, ft: 21.5	
	-	ng Met er weig				s / 3() inch	<u> </u>						3		
	otes:	or worg	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	u	1 10 10	0,70	0 11101	•								
	ered															
	Inches Recovered	.⊑	Sampler Type	els	_		Loi	tion	eet	g						
ø	Re	/ 6 i	er T	Water Levels	PID (ppm)		Discoloration	Elevation	Depth in Feet	Graphic Log	%	%		%	Lithologic Description and Drilling Comments:	
Sample	ches	Blows / 6	ldmr	ater	<u>a</u>	Odor	scol	ш	epth	aph	Gravel %	Sand %	Silt %	Clay %		
S	ŭ	ă	S	3		ŏ		98.6	۵	Ö	ō	S	i <u>s</u>	Ö	1001111	
						1	1	98.4-			ļ				ASPHALT: over base rock.	
											•					
								97.6-	1-						SANDY CLAY (CL): dark brown, very fine to fine	
										-///					grained sand, trace fine gravel, moist.	
									2-	1///						
									3-							
								94.6-	4-						GRAVEL with Silt and Sand (GW-GM): dark brown t	
											}				dark gray, fine and coarse gravel, fine to coarse grained	ť
									_						sand, moist.	
\times	0	15			0) J							
$\overline{}$	0	17	CMSS								[
			S			No	No		6-		40	30	20	10		
	5	17	_								70		20			
									7-		ţ					
3									'							
2											ţ					
2								90.6-	8-						SANDY SILT (ML): brown, very fine to fine grained	
JSA.										-					sand, clayey.	
¥									9-							
-SAIN									_							
SCS-SANIA ROSA.GDI 04/19/05																
01203312.00.GPJ	6	5	1		0				10-	1111		30	40	30		
32/			SS							1111		30	40	30		
2033	6	5	CMSS						11-	4111						
<u> </u>	6	5		∇								30	40	30		
SCS-SANTA KOSA BOKING LOG																
	S	C S	Е	N	G L	N	ΕF	R S		BC)RI	NC	- 1	$\overline{\Omega}$	6 MW-10	
727								-R J							Figure:	
Ž		onment Westw								Ghil 246					Company Appendix A	
NAO	Santa	a Rosa,	Calif	fornia	a 9540					San	ta R	osa	, Ca	iforn	ia MW-10	
9	Ph.:	707-546	3-946	1 F	ax: 70	7-544	1-5769	9		Job	Nur	nbei	r: 01	203	312.00 1 of 2	

Sample	Inches Recovered	Blows / 6 in	Sampler Type	Water Levels	PID (ppm)	Odor	Discoloration	Elevation	Depth in Feet	Graphic Log	Gravel %	Sand %	Silt %	Clay %	Lithologic Description and Drilling Comments:
	6	2			0				- 13- - 14-			30	40	30	
	6	3	CMSS			No	No		15- - 16- - 17-			30	40 40	30	
	6	3 4	CMSS		0			80.6-	18- 19- 20- 21-			30 30 30	30 30 30	40 40 40	SANDY CLAY (CL): dark brown, very fine to fine grained sand, wet. Dark gray.
S-SANTA ROSA.GDT 04/19/05	6	4				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	77.1-	22- 23- 24- 25-			33	30	-TV	TOTAL DEPTH = 21.5 FEET
COSA BORNIG LOG 0120331200.GFJ SCS-SANIA ROSA.GDI 04/19/05		C S				N	E E	R S	26- - 27- -						G MW-10

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Appendix A MW-10 2 of 2

APPENDIX B

WELL COMPLETION DIAGRAMS

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769

WELL COMPLETION DIAGRAM FOR MW-04

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Figure:

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Figure:

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769

WELL COMPLETION DIAGRAM FOR MW-06

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Figure:

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Figure:

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769 **Ghilotti Construction Company** 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Figure:

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Figure:

Environmental Consultants 3645 Westwind Boulevard Santa Rosa, California 95403 Ph.: 707-546-9461 Fax: 707-544-5769

Ghilotti Construction Company 246 Ghilotti Avenue Santa Rosa, California Job Number: 01203312.00

Figure:

APPENDIX C

WELL DEVELOPMENT RECORDS WELL PURGE RECORDS

SCSE	NGINEE	DS	WELL DEVELO	OPMENT RECORD	WELL NUMBER
JUJ L	NOINLL	K J	WALLE DEVEL	SPINIENT RECORD	MW-04
PROJECT			JOB NUMBER	SITE	RECORDED BY
Ghile	otti Construction Cor	npany	01203312.00	246 Ghilotti Avenue	Amy Yardley
PROJECT LOCATION			AIR TEMPERATURE	WEATHER	SUBCONTRACTOR
246 Ghilott	ti Avenue Santa Rosa	ı, California	~63 °	Sunny	None
Λ	METHOD	DEVELOPMENT (CRITERIA		
HAND PUMP (HP)		Minimum o stabilized.	of 4 well volumes or unti	l discharge is clear and water	characteristics have
SUBMERSIBLE PUMP (SP) —	X	* Oil/water	r interface probe used to	check for NAPLs; MLE = N	leter Limit Exceeded, i.e.
BAILER (B)		>999 NTU			,
SURGE BLOCK (SB)	X				
			1	PURGE VOLUME CALCULAT	ION

 d_H

HOLE DIAMETER GROUND SURFACE (S) WELL CASING INSIDE DIAM $d_wID =$ 2.0 **OUTSIDE DIAM** $d_wOD =$ DEPTH TO: 3.81 WATER LEVEL TD_{S} BASE OF SEAL S 4.0 TD_{C} BASE OF SCREEN 20.1 TD_s BASE OF SUMP 20.1 ESTIMATED FILTER 0.25

PACK POROSITY

Diameters in (inches) : Depths in (feet)

CASING VOLUME =

$$V_{c} = \pi \left(\frac{d_{W}ID}{2}\right)^{2} (TD_{c} - H) = 3.14 \left(\frac{0.17}{2}\right)^{2} (20.1 - 4.3)$$
$$= 0.35 \text{ ft}^{3}$$

FILTER PACK PORE VOLUME =

$$V_F = \pi \left[\left(\frac{d_H}{2} \right)^2 - \left(\frac{d_WOD}{2} \right)^2 \right] (TD_s - (S \text{ or H})^*)(P)$$

= 1.25 ft ³

TOTAL WELL VOLUME =

$$V_T = V_C + V_F = 1.59 \text{ ft}^3 \text{ x 7.48 gal/ft}^3 = 11.9 \text{ gal}$$

(* If S > H, use S; If S < H, use H)

		DEVELOPMENT LOG CUMULATIVE TOTAL REMOVE							WATER	CHARACT	ERISTICS		COMMENTS
	DATE	TIN BEGIN	ME FINISH	METHOD	WATER REMOVED (GAL)	GAL	WELL VOLUMES	pН	CONDUCTIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPERATURE (°C)	DISSOLVED OXYGEN (ppm)	
	02/02/05	01:30	01:31	SP	1	1	0.08	7	2.42	616	20.9	7.53	
	02/02/05	01:31	01:33	SP	2	3	0.25	6.85	1.71	*MLE	21.1	6.31	
	02/02/05	01:33	01:35	SP	2	5	0.42	6.75	1.52	*MLE	21	4.71	
	02/02/05	01:35	01:38	SP	3	8	0.67	6.78	1.41	*MLE	21.1	3.88	
	02/02/05	01:40	01:50	SB	0	8	0.67	n.a.	n.a.	n.a.	n.a.	n.a.	Surged well
	02/02/05	01:52	01:57	SP	5	13	1.09	6.78	2.06	500	19.5	4.39	
	02/02/05	01:57	02:03	SP	5	18	1.51	6.73	1.64	*MLE	20.3	2.57	
	02/02/05	02:03	02:13	SP	10	28	2.35	6.64	1.4	*MLE	20.8	2.28	
	02/02/05	02:13	02:23	SP	10	38	3.19	6.6	1.33	*MLE	20.6	5.09	
905	02/02/05	02:23	02:33	SP	10	48	4.03	6.63	1.28	759	20.6	5.15	
4/19/2005	02/02/05	02:33	02:38	SP	5	53	4.45	6.68	1.28	466	20.9	3.86	
ate: 4	02/02/05	02:38	02:42	SP	5	58	4.86	6.7	1.28	289	20.8	5.66	
Project ID: 01203312.00.GPJ Date:	02/02/05	02:42	02:47	SP	5	63	5.28	6.7	1.26	255	20.9	4.11	
2.00.0													
20331													
D: 01													
oject I													
IENT													
LOPN													
EVE													
ELL I													
m: W													
Report Form: WELL DEVELOPMENT 2													
Repo													

					WELL NUMBER
SCSE	NGINEER	S	WELL DEVELO	PMENT RECORD	MW-05
PROJECT			JOB NUMBER	SITE	RECORDED BY
Gh	ilotti Construction Compa	ıny	01203312.00	246 Ghilotti Avenue	Amy Yardley
PROJECT LOCATION			AIR TEMPERATURE	WEATHER	SUBCONTRACTOR
246 Ghile	otti Avenue Santa Rosa, C	alifornia	~63 °	Sunny	None
	METHOD	DEVELOPMENT CR - Minimum of stabilized.		discharge is clear and water o	characteristics have
HAND PUMP (HP) SUBMERSIBLE PUMP (SP)	X	* Oil/water i	nterface probe used to c	check for NAPLs; MLE = M	leter Limit Exceeded, i.e.
BAILER (B)		>999 NTU's)		,	
SURGE BLOCK (SB)	X	-			
			F	PURGE VOLUME CALCULATI	ON

HOLE DIAMETER $d_H = 8.0$

WELL CASING

DEPTH TO:

WATER LEVEL h = 5.48
BASE OF SEAL S = 4.0
BASE OF SCREEN TD_S = 20.2
BASE OF SUMP TD_C = 20.2

ESTIMATED FILTER P = 0.25 PACK POROSITY

Diameters in (inches) : Depths in (feet)

CASING VOLUME =

$$V_{c} = \pi \left(\frac{d_{W}ID}{2}\right)^{2} (TD_{c} - H) = 3.14 \left(\frac{0.17}{2}\right)^{2} (20.2 - 6.1)$$
$$= 0.31 \text{ ft}^{3}$$

FILTER PACK PORE VOLUME =

$$V_{F} = \pi \left[\left(\frac{d_{H}}{2} \right)^{2} - \left(\frac{d_{W}OD}{2} \right)^{2} \right] (TD_{s} - (S \text{ or H})^{*})(P)$$
= 1.11 ft ³

TOTAL WELL VOLUME =

$$V_T = V_C + V_F = 1.42 \text{ ft}^3 \text{ x 7.48 gal/ft}^3 = 10.6 \text{ gal}$$

(* If S > H, use S; If S < H, use H)

		DEVE	LOPMEN	NT LOG			LATIVE REMOVED		WATER	CHARACT	ERISTICS		COMMENTS
	DATE	TIM	ИΕ	METHOD	WATER REMOVED	GAL	WELL	pН	CONDUCTIVITY	TURBIDITY	TEMPERATURE	DISSOLVED OXYGEN	
l	5,112	BEGIN	FINISH		(GAL)	- O/ 1.E	VOLUMES	ρ	(mmhos/cm)	(NTU)	(°C)	(ppm)	
L	02/02/05	01:40	01:41	SP	1	1	0.09	6.89	1.34	898	18.9	5.71	
	02/02/05	01:41	01:43	SP	2	3	0.28	6.75	1.22	630	18.3	6.44	
	02/02/05	01:43	01:45	SP	2	5	0.47	6.63	1.19	*MLE	18.4	5.98	
	02/02/05	01:45	01:47	SP	2	7	0.66	6.57	0.938	*MLE	18.5	3.91	
	02/02/05	01:50	02:00	SB	0	7	0.66	n.a.	n.a.	n.a.	n.a.	n.a.	Surged well
	02/02/05	02:50	02:55	SP	5	12	1.13	6.84	1.22	586	18	5.04	
	02/02/05	02:55	03:00	SP	5	17	1.60	6.62	0.826	*MLE	18.3	5.16	
	02/02/05	03:00	03:10	SP	10	27	2.54	6.58	0.742	*MLE	18.3	4.98	
	02/02/05	03:10	03:20	SP	10	37	3.48	6.55	0.71	793	18.2	6.11	
3	02/02/05	03:20	03:25	SP	5	42	3.95	6.52	0.711	523	18.2	5.11	
12/20	02/02/05	03:25	03:30	SP	5	47	4.43	6.55	0.704	444	18.2	4.62	
Date: 4/19/2003	02/02/05	03:30	03:40	SP	10	57	5.37	6.53	0.679	307	18.1	6.27	
r. U	02/02/05	03:40	03:45	SP	5	62	5.84	6.52	0.687	264	18.2	4.56	
Report Form: WELL DEVELOPMENT 2 Project ID: 01203312.00.GFJ	02/02/05	03:45	03:50	SP	5	67	6.31	6.51	0.687	254	18.2	4.54	
71000													
7.017													
1206													
71.													
EINI													
N I													
12 / 2													
777													
III. WL													
10.1													
Nepo													

Report Form: WELL DEVELOPMENT 2 Project ID: 01203312.00.GPJ Date: 4/19/2005

SCSF	NGINEE	RS	WELL DEVELO	OPMENT RECORD	WELL NUMBER
		IX 5			MW-06
PROJECT			JOB NUMBER	SITE	RECORDED BY
Gh	ilotti Construction Con	ıpany	01203312.00	246 Ghilotti Avenue	Amy Yardley
PROJECT LOCATION			AIR TEMPERATURE	WEATHER	SUBCONTRACTOR
246 Ghil	otti Avenue Santa Rosa	, California	~63 °	Sunny	None
	METHOD	DEVELOPMENT	CRITERIA		<u>'</u>
HAND DUMP (UP)		Minimum stabilized.	of 4 well volumes or unti	l discharge is clear and water	characteristics have
HAND PUMP (HP) SUBMERSIBLE PUMP (SP)	X	REMARKS	er interface probe used to	o check for NAPLs; MLE = N	Joton Limit Evapodod i a
BAILER (B)		— >999 NTU		check for NAI Es, WILE - W	ictei Ellint Exceeded, i.e
SURGE BLOCK (SB)	X				
				PURGE VOLUME CALCULAT	ION
HOLE DIVMETE	ED 4 - 9		d _w ◀		

HOLE DIAMETER $d_H = 8.0$

WELL CASING

DEPTH TO:

WATER LEVEL h = 6.18
BASE OF SEAL S = 4.0
BASE OF SCREEN TD_S = 20.3
BASE OF SUMP TD_C = 20.3

ESTIMATED FILTER P = 0.25 PACK POROSITY

Diameters in (inches) : Depths in (feet)

CASING VOLUME =

$$V_{c} = \pi \left(\frac{d_{W}ID}{2}\right)^{2} (TD_{c} - H) = 3.14 \left(\frac{0.17}{2}\right)^{2} (20.3 - 6.6)$$
$$= 0.30 \text{ ft}^{3}$$

FILTER PACK PORE VOLUME =

$$V_{F} = \pi \left[\left(\frac{d_{H}}{2} \right)^{2} - \left(\frac{d_{W}OD}{2} \right)^{2} \right] (TD_{s} - (S \text{ or H})^{*})(P)$$
= 1.08 ft ³

TOTAL WELL VOLUME =

$$V_T = V_C + V_F = 1.38 \text{ ft}^3 \text{ x 7.48 gal/ft}^3 = 10.3 \text{ gal}$$

(* If S > H, use S; If S < H, use H)

		DEVE	LOPMEN	NT LOG			LATIVE REMOVED		WATER	CHARACT	ERISTICS		COMMENTS
	DATE -	TIM	ИE	METHOD	WATER REMOVED	GAL	WELL	pН	CONDUCTIVITY	TURBIDITY	TEMPERATURE	DISSOLVED OXYGEN	
L	5,112	BEGIN	FINISH		(GAL)	5,12	VOLUMES	ρ	(mmhos/cm)	(NTU)	(°C)	(ppm)	
	02/03/05	10:25	10:26	SP	1	1	0.10	7.06	1.66	846	17.4	6.84	
	02/03/05	10:26	10:28	SP	2	3	0.29	6.69	1.28	*MLE	17.5	7.01	
	02/03/05	10:28	10:30	SP	2	5	0.48	6.53	1.12	*MLE	17.6	6.14	
	02/03/05	10:30	10:40	SB	0	5	0.48	n.a.	n.a.	n.a.	n.a.	n.a.	Surged well
	02/03/05	10:47	10:52	SP	5	10	0.97	6.56	1.07	978	18.1	2.88	
	02/03/05	10:52	11:02	SP	10	20	1.94	6.54	0.777	*MLE	18.1	3.51	
ſ	02/03/05	11:02	11:12	SP	10	30	2.91	6.39	0.756	739	18.3	4.68	
I	02/03/05	11:12	11:22	SP	10	40	3.88	6.43	0.74	291	18.2	4.35	
I	02/03/05	11:22	11:27	SP	5	45	4.36	6.41	0.731	209	18.3	3.69	
c I	02/03/05	11:27	11:33	SP	5	50	4.85	6.45	0.726	160	18.3	3.63	
19/20	02/03/05	11:33	11:38	SP	5	55	5.33	6.42	0.725	119	18.3	3.55	
ite: 4/													
7. U													
5.00.5													
71000													
7.012													
1132													
O. P.													
EINI 7													
OFIN													
EVEL													
ת קק													
Nepoli rollii. Well develorivent z riojeci id. 01203312.00.0r3 date. 4/19/2003													
1 1011													
nepoi													

Report Form: WELL DEVELOPMENT 2 Project ID: 01203312.00.GPJ Date: 4/19/2005

CCCE	NGINEE	D.C.	WELL DEVEL	OPMENT RECORD	WELL NUMBER
3	INGINEE	K 9	WELL DEVEL	OPINIENT RECORD	MW-07
PROJECT			JOB NUMBER	SITE	RECORDED BY
Gh	ilotti Construction Co	mpany	01203312.00	246 Ghilotti Avenue	Amy Yardley
PROJECT LOCATION			AIR TEMPERATURE	WEATHER	SUBCONTRACTOR
246 Ghile	otti Avenue Santa Ros	a, California	~63 °	Sunny	None
	METHOD	DEVELOPMENT	CRITERIA		
HAND PUMP (HP)		Minimum stabilized.		l discharge is clear and water	characteristics have
SUBMERSIBLE PUMP (SP)	X	* Oil/wate	er interface probe used to	o check for NAPLs; MLE = M	leter Limit Exceeded, i.e.
BAILER (B)		>999 NTU			,
SURGE BLOCK (SB)	X				
			- 1	PURGE VOLUME CALCULAT	ON
HOLE DIAMETE	$R d_{ij} = 8$	3.0 →	d _W ◀	CASING VOLUME -	

GROUND SURFACE (S) WELL CASING INSIDE DIAM Η $d_wID =$ -0.38 h 2.0 **OUTSIDE DIAM** $d_wOD =$ 2.5 DEPTH TO: 5.54 WATER LEVEL TD_{S} BASE OF SEAL S 4.0 TD_{C} BASE OF SCREEN TD_{s} 20.4 BASE OF SUMP 20.4

0.25

 $d_{\scriptscriptstyle H}$

ESTIMATED FILTER

Diameters in (inches) : Depths in (feet)

PACK POROSITY

CASING VOLUME = $V_C = \pi \left(\frac{d_W ID}{2}\right)^2 (TD_C - H) = 3.14 \left(\frac{0.17}{2}\right)^2 (20.4 - 5.9)$ = **0.32 ft**³

FILTER PACK PORE VOLUME =

$$V_{F} = \pi \left[\left(\frac{d_{H}}{2} \right)^{2} - \left(\frac{d_{W}OD}{2} \right)^{2} \right] (TD_{s} - (S \text{ or H})^{*})(P)$$

$$= 1.14 \text{ ft}^{3}$$

TOTAL WELL VOLUME =

 $V_T = V_C + V_F = 1.46 \text{ ft}^3 \text{ x } 7.48 \text{ gal/ft}^3 = 10.9 \text{ gal}$

(* If S > H, use S; If S < H, use H)

	DEVE	LOPME	NT LOG			JLATIVE REMOVED		WATER	CHARACT	ERISTICS		COMMENTS
DATE	BEGIN	FINISH	- METHOD	WATER REMOVED (GAL)	GAL	WELL VOLUMES	pН	CONDUCTIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPERATURE (°C)	DISSOLVED OXYGEN (ppm)	
02/03/05	10:38	10:39	SP	1	1	0.09	6.85	2.47	967	19.2	6.85	
02/03/05	10:39	10:43	SP	3	4	0.37	6.84	2.14	*MLE	19.3	7.84	
02/03/05	10:43	10:46	SP	3	7	0.64	6.78	1.92	*MLE	19.6	4.39	
02/03/05	11:30	11:40	SB	0	7	0.64	n.a.	n.a.	n.a.	n.a.	n.a.	Surged well
02/03/05	11:42	12:02	SP	20	27	2.48	6.85	1.48	*MLE	20.2	2.65	
02/03/05	12:02	12:12	SP	10	37	3.40	6.84	1.59	*MLE	20	2.95	
02/03/05	12:12	12:22	SP	10	47	4.32	6.78	1.56	*MLE	20.2	3.67	
02/03/05	12:22	12:32	SP	10	57	5.23	6.82	1.51	*MLE	20.2	4.29	
02/03/05	12:32	12:37	SP	5	62	5.69	6.79	1.49	395	20.2	4.5	
02/03/05	12:37	12:43	SP	5	67	6.15	6.77	1.49	269	20.2	2.6	

SCS EN	GIN	E	E R	S	WELL DEVEL	OPMENT RECORD	WELL NUMBER MW-08
PROJECT					JOB NUMBER	SITE	RECORDED BY
Ghilotti	Construct	ion (Compa	ny	01203312.00	246 Ghilotti Avenue	Jason Greenlee
PROJECT LOCATION					AIR TEMPERATURE	WEATHER	SUBCONTRACTOR
246 Ghilotti A	venue San	ta R	losa, C	alifornia	~63 °	Sunny	None
HAND PUMP (HP) SUBMERSIBLE PUMP (SP) BAILER (B)	X			* Oil/water i		o check for NAPLs; MLE = M	leter Limit Exceeded, i.e.
SURGE BLOCK (SB)	Α			-		PURGE VOLUME CALCULATI	ON
HOLE DIAMETER	d_{H}	=	8.0	→ d _w	GROUND SURFACE (S)	CASING VOLUME =	
WELL CASING INSIDE DIAM OUTSIDE DIAM	d _w ID d _w OD		2.0 2.5	-0.29 h	H	$V_{c} = \pi \left(\frac{d_{W}ID}{2}\right)^{2} (TD_{c} - H) =$ = 0.37 ft ³	$3.14 \left(\frac{0.17}{2}\right)^2 $ (20.3 - 3.5
DEPTH TO:	h					FILTER PACK PORE VOLUME	

WATER LEVEL 3.25 S BASE OF SEAL = 4.0 BASE OF SCREEN $\,^{}$ TD_s \dot{TD}_{C} 20.3 SCREEN INTERVAL BASE OF SUMP 20.3 ESTIMATED FILTER PACK POROSITY = 0.25 d_H Diameters in (inches) : Depths in (feet)

 $V_F = \pi \left[\left(\frac{G_H}{2} \right) - \left(\frac{G_WOD}{2} \right) \right] (TD_s - (S \text{ or H})^*)(P)$ = 1.28 ft³

TOTAL WELL VOLUME =

 $V_T = V_C + V_F = 1.65 \text{ ft}^3 \text{ x 7.48 gal/ft}^3 = 12.3 \text{ gal}$

(* If S > H, use S; If S < H, use H)

	DEVE	LOPMEN	NT LOG		CUMULATIVE TOTAL REMOVED			WATER		COMMENTS		
DATE	TIN		METHOD	WATER REMOVED (GAL)	GAL	WELL VOLUMES	pН	CONDUCTIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPERATURE (°C)	DISSOLVED OXYGEN (ppm)	
	BEGIN	FINISH		, ,								
02/03/05	02:19	02:27	SP	8	8	0.65	n.a.	n.a.	n.a.	n.a.	n.a.	
02/03/05	02:35	02:45	SB	0	8	0.65	n.a.	n.a.	n.a.	n.a.	n.a.	Surged well
02/03/05	02:45	02:50	SP	5	13	1.05	7.25	2.27	*MLE	18.6	2.75	
02/03/05	02:50	03:10	SP	20	33	2.68	6.81	1.66	669	18.6	3.36	
02/03/05	03:10	03:30	SP	20	53	4.30	6.86	1.58	*MLE	18.5	6.6	
02/03/05	03:30	03:54	SP	20	73	5.92	6.75	1.51	*MLE	18.3	6.35	
3												
20002112:000112001120011												
1000												
100												
7												
lode lode												

SCS EN	GINE	E R	S	WELL DEVE	LOPMENT RECORD	WELL NUMBER MW-09					
PROJECT				JOB NUMBER	SITE	RECORDED BY					
Ghilotti C	Construction (Compa	ny	01203312.00	246 Ghilotti Avenue	Amy Yardley					
PROJECT LOCATION				AIR TEMPERATURE	WEATHER	SUBCONTRACTOR					
246 Ghilotti Av	enue Santa R	losa, C	alifornia	~63 °	Overcast	None					
HAND PUMP (HP) SUBMERSIBLE PUMP (SP)	X		stabilized. REMARKS	Minimum of 4 well volumes or until discharge is clear and water characteristics have stabilized.							
BAILER (B) SURGE BLOCK (SB)	X		>999 NTU's)		to check for 1411 25, 1122	Acceded, no.					
HOLE DIAMETER d _H = 8.0			→ d _w	GROUND SURFACE (S	PURGE VOLUME CALCULA' CASING VOLUME =						
WELL CASING INSIDE DIAM OUTSIDE DIAM $d_w ID = 2.0$ $d_w OD = 2.5$			-0.25 h	H	$= 3.14 \left(\frac{0.17}{2}\right)^2 (20.3 - 4.3)$						
DEDTH TO:					FILTER PACK PORE VOLUM	E =					

WATER LEVEL 4.06 BASE OF SEAL S 4.0 TD_S BASE OF SCREEN 20.3 BASE OF SUMP 20.3 ESTIMATED FILTER 0.25 PACK POROSITY

Diameters in (inches) : Depths in (feet)

TD_s TD_{C} **→** d_H

 $V_{F} = \pi \left[\left(\frac{d_{H}}{2} \right)^{2} - \left(\frac{d_{W}OD}{2} \right)^{2} \right] (TD_{s} - (S \text{ or H})^{*})(P)$ $= 1.26 \text{ ft}^{3}$

TOTAL WELL VOLUME =

 $V_T = V_C + V_F = 1.61 \text{ ft}^3 \text{ x 7.48 gal/ft}^3 = 12.0 \text{ gal}$

(* If S > H, use S; If S < H, use H)

02/0- 02/0- 02/0- 02/0- 02/0- 02/0-	BE B	1:50 1 1:55 1 2:05 1 2:25 1 2:45 1 2:55 1		SP SB SP SP SP	WATER REMOVED (GAL) 7 0 20 20	7 7 27	WELL VOLUMES 0.58 0.58	pH n.a. n.a.	CONDUCTIVITY (mmhos/cm) n.a. n.a.	TURBIDITY (NTU)	TEMPERATURE (°C)	DISSOLVED OXYGEN (ppm)	
02/0- 02/0- 02/0- 02/0- 02/0- 02/0-	14/05 11 14/05 11 14/05 12 14/05 12 14/05 12 14/05 12 14/05 13	1:50 1 1:55 1 2:05 1 2:25 1 2:45 1 2:55 1	11:55 12:05 12:25 12:45 12:55	SB SP SP SP	7 0 20	7 27	0.58		n.a.	n.a.		,	
02/0- 02/0- 02/0- 02/0- 02/0- 02/0-	04/05 11 04/05 12 04/05 12 04/05 12 04/05 12 04/05 13	1:55 1 2:05 1 2:25 1 2:45 1 2:55 1	12:05 12:25 12:45 12:55	SB SP SP SP	0 20	7 27	0.58				n.a.	n.a.	
02/0- 02/0- 02/0- 02/0- 02/0-	04/05 12 04/05 12 04/05 12 04/05 12 04/05 13	2:05 1 2:25 1 2:45 1 2:55 1	12:25 12:45 12:55	SP SP SP	20	27		n.a.	n o				
02/0- 02/0- 02/0- 02/0-	04/05 12 04/05 12 04/05 12 04/05 13 04/05 13	2:25 1 2:45 1 2:55 1	12:45 12:55	SP SP			224		II.a.	n.a.	n.a.	n.a.	Surged well
02/0- 02/0- 02/0-	04/05 12 04/05 12 04/05 13 04/05 13	2:45 1 2:55 1	12:55	SP	20		2.24	6.94	1.45	551	17.4	7.85	
02/0	04/05 12 04/05 13 04/05 13	2:55 1				47	3.91	6.86	0.889	*MLE	17.1	9.07	
02/0	04/05 13 04/05 13		13:05		10	57	4.74	6.83	0.833	622	16.9	9.8	
	04/05 13	3:05 1		SP	10	67	5.57	6.69	0.837	*MLE	17	9.84	
02/0			13:10	SP	5	72	5.99	6.64	0.819	*MLE	17.3	9.78	
		3:10 1	13:15	SP	5	77	6.40	6.59	0.815	570	17.3	9.08	
02/0	04/05 13	3:15	13:18	SP	3	80	6.65	6.58	0.817	427	17.3	9.91	
S 02/0	04/05 13	3:18 1	13:20	SP	2	82	6.82	6.58	0.816	312	17.3	9.06	
Project ID: 01203312.00.GPJ Date: 4/19/2005													
ate: 4/													
PJ D													
5.00.G													
03312													
): 012													
ject II													
2 Pro													
ENT													
MdO.													
EVEL													
TT D													
n: WE													
Report Form: WELL DEVELOPMENT													
Repor													

S C S E N G	FIN	E	ΕR	S	WELL DE	EVEL	OPMENT RECORD	WELL NUMBER MW-10
PROJECT					JOB NUMBER		SITE	RECORDED BY
Ghilotti Co	nstructi	ion	Compa	ny	012033	12.00	246 Ghilotti Avenue	Amy Yardley
PROJECT LOCATION					AIR TEMPERATU	JRE	WEATHER	SUBCONTRACTOR
246 Ghilotti Ave	nue San	ta F	Rosa, C	alifornia	~63	0	Overcast	None
METHOL)			DEVELOPMENT CR				
HAND PUMP (HP) SUBMERSIBLE PUMP (SP) BAILER (B)	X			stabilized. REMARKS	nterface prob		il discharge is clear and water o check for NAPLs; MLE = N	
SURGE BLOCK (SB)	21			-			DUDGE VOLUME ON OUR AT	ION
HOLE DIAMETER	d_{H}	=	8.0	→ d _w	← _ GROUND SUR	RFACE (S)	PURGE VOLUME CALCULAT CASING VOLUME =	
WELL CASING				* * * * * * * * * * * * * * * * * * *		A	$V_{c} = \pi \left(\frac{d_{W}ID}{2} \right)^{2} (TD_{c} - H) =$	$= 3.14 \left(\frac{0.17}{2} \right)^2 (20.5 - 4.2)$
INSIDE DIAM	d_wID	=	2.0	-0.51 h	Н		\	(2)
OUTSIDE DIAM	d_wOD	=	2.5	<u>*</u>			= 0.36 ft ³	
DEPTH TO: WATER LEVEL BASE OF SEAL	h S	=	3.67 4.0		TI	D_{s}	FILTER PACK PORE VOLUME $V_F = \pi \left[\left(\frac{d_H}{2} \right)^2 - \left(\frac{d_WOD}{2} \right)^2 \right]$	
BASE OF SCREEN	TD _s	=	20.5		SCREEN	TD _c	= 1.29 ft ³	

BASE OF SUMP ESTIMATED FILTER PACK POROSITY 0.25 Diameters in (inches) : Depths in (feet)

→ d_H

TOTAL WELL VOLUME =

 $V_T = V_C + V_F = 1.64 \text{ ft}^3 \text{ x 7.48 gal/ft}^3 = 12.3 \text{ gal}$

(* If S > H, use S; If S < H, use H)

		DEVE	LOPMEN	NT LOG		CUMULATIVE TOTAL REMOVED			WATER	CHARACT	ERISTICS		COMMENTS
	DATE	TII	МЕ	METHOD	WATER REMOVED	GAL	WELL VOLUMES	pН	CONDUCTIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPERATURE (°C)	DISSOLVED OXYGEN	
		BEGIN	FINISH		(GAL)		VOLUMLS		(IIIIIIIO5/CIII)	(1410)	(0)	(ppm)	
	02/04/05	10:00	10:08	SP	8	8	0.65	n.a.	n.a.	n.a.	n.a.	n.a.	
	02/04/05	10:10	10:20	SB	0	8	0.65	n.a.	n.a.	n.a.	n.a.	n.a.	Surged well
	02/04/05	10:20	10:40	SP	20	28	2.28	7.11	1.58	498	18.4	7.37	
	02/04/05	10:40	10:50	SP	10	38	3.10	6.96	1.32	*MLE	18.2	8.51	
	02/04/05	10:50	11:00	SP	10	48	3.91	6.94	1.32	*MLE	17.8	8.55	
	02/04/05	11:00	11:10	SP	10	58	4.72	6.89	1.28	*MLE	17.8	7.96	
	02/04/05	11:10	11:15	SP	5	63	5.13	6.83	1.25	880	18.3	6.86	
	02/04/05	11:15	11:20	SP	5	68	5.54	6.79	1.25	790	18.7	7.83	
	02/04/05	11:20	11:25	SP	5	73	5.95	n.a.	n.a.	n.a.	n.a.	n.a.	Went dry
501													
Project ID: 01203312.00.GPJ Date: 4/19/2005													
ate: 4													
зру D													
2.00.C													
20331													
D: 012													
ject I													
ENT													
OPM													
EVEI													
ELL D													
n: WE													
Report Form: WELL DEVELOPMENT 2													
Repor													

S	S C :	S E N	IGII	NEEF	RS		20	PURGE 005 - 1st Qu	_	RD		WELL NUMBER MW- 1
PROJ	JECT	Ghilo	tti Constri	uction Cor	npany		JOB NUMBER 01203	312.00	SITE 246 (Ghilotti Av		RECORDED BY Amy Yardley
SUI BAI	ND PUN BMERS ILER HER		PUR MET	GING 'HOD	SAMPLIN METHOL		PURGING CF for 2" dia (±10%), o REMARKS * Oil/wate	etteria Mi . wells), unt or until dry.	nimum of 3 til water pa	wetted cas rameters (j	ing volume pH, temp., o	s (or 5 gallons m inimum cond.) have stabilized Well as builts were
DE \	ASING I EPTH T WATEF	O:	(D _c): 2.0	<u> </u>	D _c	GROUND (FM)	WEATHE TAGGED	WATER LEV				2/11/2005 Sunny 4.89 / 4.9
NA SC E	APL THE CREEN TOP: BOTTO DTAL D	DEPTH: DM: EPTH (TDc	9.0 19.	-0.94 .*	h — — —	H TD _C	PURGE V DEPTH T TIME OF	WELL DEPT OLUME (3 C. O WATER FO SAMPLING: O WATER A ANCE OF SAI	ASING VOLU OR 80% REC	JMES):	7.53 f	17.86 4 gallons ft. below TOC 15:15 ft. below TOC Clear
ON	IE CASII	NG VOLUME:	:	2.15 gallor	ns		LABORAT		ODY FORM I	 FOR ANALY	Analy	tical Sciences RMATION.
DA	ATE -	PURGIN		WATER REMOVED (GAL)		CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	CHARACTE TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
2/1	1/05	13:36	13:37	1	1	0.47	7.26	0.731	10	18.5	0.52	
2/1	1/05	13:37	13:39	2	3	1.40	7.13	0.739	10	18.2	0.47	
2/1	1/05	13:39	13:41	2	5	2.33	7.04	0.744	10	18.2	0.32	
2/1	1/05	13:41	13:44	2	7	3.26	6.98	0.741	10	18.4	0.23	
19/200												
ate: 4/												
O (4)												
2.00.6												
Report Form: WELL PURGE RECURD 2 Project ID: 01203312.00.GrZ Date: 4/19/2003												
oject												
2 Pi												
ORE												
KEK E KEK												
PURG												
ELLI												
# III												
ort Fo												
Rep												

	CS EN	1 G I I	NEEF	R S		20	PURGE 005 - 1st Qu	ıarter	RD		WELL NUMBER MW- 2
PROJECT		tti Constri	uction Cor	npany		JOB NUMBER 01203	R 3312.00	SITE 246 (Ghilotti Av		RECORDED BY Amy Yardley
HAND SUBME BAILEF OTHEF	PUMP ERSIBLE PUMP R	PUR MET	GING 'HOD	SAMPLING METHOE		PURGING CF for 2" dia (±10%), o REMARKS * Oil/wate	RITERIA Mi n. wells), unt or until dry.	inimum of 3 til water pa	wetted cas rameters (j	sing volume pH, temp., o	s (or 5 gallons minimum cond.) have stabilized Well as builts were
DEPT WA NAF NAPL	NG DIAMETER TH TO: TER (h): PL: THICKNESS:	5.2 n.a n.a	1 <u>*</u> -0.60	→ D _C	GROUND (FM)	TAGGED TAGGED PURGE V	SAMPLING: R: WATER LEV WELL DEPT OLUME (3 C.	TH FROM TO ASING VOLU	C:	5.	2/11/2005 Sunny .21 / 5.21 16.45 5 gallons ft. below TOC
TOTA Diamete	P: TTOM: LL DEPTH (TD _c ers in (inches) : D CASING VOLUME H] [3.14 (D _c / 2) ²]	epths in (feet)	0 -		TD _C	TIME OF DEPTH TO APPEARAL LABORAT	SAMPLING: O WATER A ANCE OF SAI	T TIME OF S MPLE:	AMPLING:	6.02 t Analy	15:30 ft. below TOC Clear tical Sciences
DATE	TI	ME FINISH	WATER REMOVED (GAL)		CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
2/11/0	5 13:58	13:59	1	1	0.55	7.09	0.696	10	16.7	0.88	
2/11/0	5 13:59	14:01	2	3	1.64	7.03	0.755	10	16.7	0.32	
203312.00.GPJ Date: 4/19/2005											
Report Form: WELL PURGE RECORD 2 Project ID: 01203312.00.GPJ Date: 4/19/2005											
Report Form: WELL PC											

	S C	S E N	I G I N	NEEF	RS		20	PURGE 005 - 1st Qu	_	RD		WELL NUMBER MW- 3
Î	PROJECT	Ghilot	tti Constri	action Con	npany		JOB NUMBER 01203	R 312.00	SITE 246 (Ghilotti Av		RECORDED BY Amy Yardley
	HAND PUN SUBMERS BAILER OTHER		PUR MET	GING HOD	SAMPLING METHOE		(±10%), 0 REMARKS * Oil/wate	. wells), unt or until dry.	til water pa	rameters (j	pH, temp., o	s (or 5 gallons m inimum cond.) have stabilized Well as builts were
	CASING DEPTH T		(D _c): 2.0		→ D _c	GROUND (FM)	WEATHE					2/11/2005 Sunny
	NAPL: NAPL TH SCREEN	ICKNESS:	n.a n.a	·* -0.39 ·*	h	H	TAGGED PURGE V	WATER LEV WELL DEPT OLUME (3 C. O WATER FO	TH FROM TO	C:	6.	.86 / 4.86 18.12 7 gallons ft. below TOC
	Diameters in	EPTH (TD _C n (inches) : De	epths in (feet)	0 -	¥	SCREEN INTERVAL	DEPTH T	SAMPLING: O WATER AT ANCE OF SAI FORY:		AMPLIN <u>G:</u>		12:00 ft. below TOC Clear tical Sciences
	[TD _c - H] [3	5.14 (D _c / 2) ²]		2.24 gallor		JLATIVE	SEE CHA	IN OF CUSTO			TICAL INFOR	İ
	DATE	PURGIN		WATER REMOVED (GAL)	TOTAL F	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
ı	2/11/05	11:07	11:08	1	1	0.45	7.43	0.663	10	16.9	0.90	
İ	2/11/05	11:08	11:10	2	3	1.34	7.29	0.602	10	16.8	0.36	
	2/11/05	11:10	11:13	2	5	2.23	7.23	0.651	10	17.1	0.52	
	2/11/05	11:13	11:15	2	7	3.12	7.22	0.667	10	17.5	0.28	
l												
90												
1/19/20												
Jate: 4												
GPJ 1												
12.00.												
Report Form: WELL PURGE RECORD 2 Project ID: 01203312.00.GPJ Date: 4/19/2005												
ject II												
2 Pro												
ORD 2												
KEC												
JRGE												
LL PI												
ı: WE												
t Forn												
Repor												

	SEN	I G I 1	NEEF	R S		20	PURGE 005 - 1st Qu	ıarter	RD		WELL NUMBER MW-04	
PROJECT	Chilo	44: Camatum	ration Con			JOB NUMBE	R 3 312.00	SITE	Ghilotti Av		RECORDED BY	
	Gniio		action Con								Amy Yardley	
HAND PU	MP SIBLE PUMP	MET	GING 'HOD 	SAMPLIN METHOL		for 2" dia (±10%), o	n. wells), unt or until dry.	til water pa	rameters (pH, temp.,	es (or 5 gallons m inimun cond.) have stabilized	
BAILER OTHER				X		* Oil/wat Exceeded	er interface (<999 ntu'	probe used s).	to check f	for NAPLs.	MLE = Meter Limit	
CASING	DIAMETER	(D _c):2.0)	- ID	l	DATE OF	SAMPLING:			2/11/2005		
DEPTH	го:		Т	\rightarrow D _C	GROUND SURFACE (S)	WEATHE	R:				Sunny	
WATE	R (h):	3.8	<u> 7</u>		SURFACE	TAGGED	WATER LEV	ELS FROM	TOC:	3	3.86 / 3.87	
NAPL:		n.a	·* -0.44	h		TAGGED	WELL DEPT	H FROM TO	C:		19.71	
NAPL TH	IICKNESS:	n.a	.*	 	H	PURGE V	OLUME (3 C	ASING VOLU	JMES):	7.	.7 gallons	
	I DEPTH:					DEPTH T	O WATER FO	OR 80% REC	HARGE:	7.03	ft. below TOC	
TOP:		5.1	<u> </u>	_	TD_{c}	TIME OF	SAMPLING:				14:20	
BOTT	CM:	20.	1	<u> </u>	: -▼		O WATER A	T TIME OF S	AMPLING:	4 16	ft. below TOC	
TOTAL D	DEPTH (TD _C	;):20.1	10	<u> </u>	SCREEN		ANCE OF SAI		7 UVII EII <u>10.</u>	4.10	Cloudy	
Diameters i	n (inches) : De	epths in (feet)		=-	INTERVAL			VIF LL.		A lv		
	ING VOLUME 3.14 (D _c / 2) ²]		2.58 gallor	ns		SEE CHA	IN OF CUST	ODY FORM I	OR ANALY	•	tical Sciences RMATION.	
	PURGIN	IG DATA			JLATIVE REMOVED		WATER	CHARACTE	ERISTICS		COMMENTS	
DATE	BEGIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)		
2/11/05	12:20	12:22	2	2	0.78	7.24	1.140	*MLE	19.6	0.35		
2/11/05	12:22	12:24	2	4	1.55	7.12	0.844	*MLE	19.8	0.43		
2/11/05	12:24	12:27	2	6	2.33	7.05	0.823	*MLE	19.8	0.40		
2/11/05	12:27	12:29	2	8	3.10	7.02	0.823	*MLE	19.9	0.28		
2/11/03	12.27	12.2	_		0.10	7.02	0.020	IVIEE	15.5	0.20		
											-	
							1	L	l	1		

	S E N	G 1	NEEF	R S		20	PURGE 005 - 1st Qu	arter	RD		WELL NUMBER MW-05
PROJECT	Chile	tti Canstur	vation Con	mnany		JOB NUMBE	R 3 312.00	SITE	Ghilotti Av		RECORDED BY
	Gillo		action Con								Amy Yardley
HAND PU SUBMERS	MP SIBLE PUMP	MET	GING HOD K	SAMPLIN METHOL		for 2" dia (±10%), o	n. wells), unt or until dry.	il water pa	rameters (pH, temp.,	es (or 5 gallons m inimun cond.) have stabilized
BAILER OTHER				X	_	* Oil/wat Exceeded	er interface l (<999 ntu's	s).	to check i	or NAPLs.	MLE = Meter Limit
CASING	DIAMETER	(D _c):2.0)	- ID	_	DATE OF	SAMPLING:			2	2/11/2005
DEPTH ⁻	го:		1	\rightarrow D_{C}	GROUND (S)	WEATHE	:R:				Sunny
WATE	R (h):	5.5	2 *	下		TAGGED	WATER LEV	ELS FROM	TOC:	5	5.52 / 5.52
NAPL:		n.a	-0.60	h		TAGGED	WELL DEPT	H FROM TO	C:		19.76
NAPL TH	IICKNESS:	n.a	<u>*</u>	h h	H	PURGE V	OLUME (3 C	ASING VOLU	JMES):	6	.9 gallons
	I DEPTH:	-				DEPTH T	O WATER FO	OR 80% REC	CHARGE:	8.34	ft. below TOC
TOP:		5.2		<u> </u>	TD_{c}	TIME OF	SAMPLING:				14:20
BOTT		20.			-	DEPTH T	O WATER A	T TIME OF S	AMPLING:	6.13	ft. below TOC
	DEPTH (TD _c	· —	20	1	SCREEN INTERVAL	APPEARA	ANCE OF SAI	MPLE:			Cloudy
	n (inches) : De			-	: ₩	LABORA ⁻	TORY:			Analy	tical Sciences
	ING VOLUME 3.14 (D _c / 2) ²]		2.30 gallor	ns	•	SEE CHA	IN OF CUST	ODY FORM I	OR ANALY	TICAL INFO	RMATION.
	PURGIN	G DATA			ILATIVE REMOVED		WATER	CHARACTE	ERISTICS		COMMENTS
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
2/11/05	12:37	12:38	1	1	0.44	7.06	0.468	*MLE	18.1	0.42	
2/11/05	12:38	12:40	2	3	1.31	6.94	0.480	*MLE	17.8	0.33	
2/11/05	12:40	12:42	2	5	2.18	6.90	0.479	*MLE	17.7	0.34	
2/11/05	12:42	12:44	2	7	3.05	6.85	0.481	*MLE	17.7	0.25	
						-					
											
											

	S C	SEN	I G I I	NEEF	RS			PURGE 005 - 1st Qu	WELL NUMBER MW-06			
ŀ	PROJECT						JOB NUMBER		SITE			RECORDED BY
		Ghilo	tti Constru	uction Con	npany		01203	312.00	246 (Ghilotti Av	enue	Amy Yardley
	HAND PUMP SUBMERSIBLE PUMP X						(±10%), 0 REMARKS * Oil/wate	. wells), unt or until dry.	til water pa	rameters (_]	pH, temp., c	s (or 5 gallons minimum cond.) have stabilized MLE = Meter Limit
	OTHER EX							(S))) Iitu i	3).			
	→ D _c ←							SAMPLING:	2	2/11/2005 Sunny		
	WATER		6.2	3 🔻	<u> </u>	GROUND (S)	WEATHE	WATER LEV	/ELS EROM	TOC:	6	.21 / 6.23
	NAPL:		n.a	* -0.41				WELL DEPT			0	20.06
	NAPL TH	ICKNESS:	n.a					OLUME (3 C			6	7 gallons
	SCREEN	DEPTH:			h j	H		OLUME (3 C. O WATER FO		· ·		t. below TOC
	TOP:		5.3	3	[]	TD _C		SAMPLING:	OR 60% REC	HARGE.	0.901	14:50
	вотто	DM:	20.	3	<u>▼ ▼ </u>	_♥			T TIME OF S	AMDLING:	6 45 6	-
	TOTAL D	EPTH (TD _c	;):20.3	30		SCREEN		O WATER A		AMPLING:		t. below TOC
	Diameters in	(inches) : De	epths in (feet)			INTERVAL		ANCE OF SAI	VIPLE.			ery cloudy
		NG VOLUME .14 (D _c / 2) ²]		2.23 gallor	ns	.] ——▼	SEE CHA		TICAL INFOR	rmation.		
ľ		PURGIN	IG DATA			LATIVE REMOVED		WATER	COMMENTS			
	DATE		ME	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN	
ŀ		BEGIN	FINISH	` '				,	, ,	. ,	(ppm)	
-	2/11/05	12:58	12:59	1	1	0.45	6.94	0.648	*MLE	18.3	0.73	
	2/11/05	12:59	13:02	2	5	1.35	6.85	0.617	*MLE	17.9	0.35	
-	2/11/05	13:02	13:04	2		2.24	6.81	0.584	*MLE	17.8	0.38	
-	2/11/05	13:04	13:06	2	7	3.14	6.78	0.569	713	17.9	0.36	
-												
-												
-												
ŀ												
ŀ												
ŀ												
/2005												
: 4/19												
Date												
0.GP.												
3312.0												
01203												
Project ID: 01203312.00.GPJ Date: 4/19/2005												
Proje												
$3D_2$												
Report Form: WELL PURGE RECORD 2												
GER							-					
PUR												
WELL												
orm:												
port F												
Re_{l}												

3C3 ENGINEERS							PURGE 005 - 1st Qu		WELL NUMBER MW-07			
PROJECT Ghilotti Construction Company						JOB NUMBER SITE 01203312.00 246 Ghilotti Avenue					RECORDED BY Amy Yardley	
	- Gillio				C						·	
	HAND PUMP SUBMERSIBLE PUMP BAILER X						PURGING CRITERIA Minimum of 3 wetted casing volumes (or 5 gallons minim for 2" dia. wells), until water parameters (pH, temp., cond.) have stabilized (±10%), or until dry. REMARKS * Oil/water interface probe used to check for NAPLs. MLE = Meter Limit Exceeded (<999 ntu's).					
	DIAMETER	(D.): 2 (<u> </u>			DATE OF	SAMPLING:				2/11/2005	
	DIAMETER	(D _C):		\rightarrow D_{C}	-					2		
DEPTH 1 WATE		5.5	7 🔻		GROUND SURFACE (S)	WEATHE		/EL 0 EB 014			Sunny	
NAPL:	(/ .	n.a	*	▼ □			WATER LEV			5	.59 / 5.57	
	ICKNESS:	n.a	-0.38				WELL DEPT				20.35	
SCREEN				h	Н	PURGE V	OLUME (3 C	ASING VOLU	JMES):	7.	1 gallons	
TOP:	DEPTH:	5.4	1		TD_{c}	DEPTH T	O WATER FO	OR 80% REC	CHARGE:	8.46 f	ft. below TOC	
ВОТТО	JW.	20.		<u> </u> <u> </u>	<u> </u>	TIME OF	SAMPLING:				15:05	
)EPTH (TD _o			<u> </u>		DEPTH T	O WATER A	T TIME OF S	AMPLIN <u>G:</u>	5.68 f	ft. below TOC	
			+0	[==	SCREEN INTERVAL	APPEARA	ANCE OF SAI	MPLE:			Cloudy	
	n (inches) : De	,				LABORA ⁻	TORY:			Analy	tical Sciences	
[TD _c - H] [3	NG VOLUME 3.14 (D _C / 2) ²]	: [7.48 gal/ft³]:	2.36 gallor	ns		SEE CHAIN OF CUSTODY FORM FOR ANALYTICAL INF					RMATION.	
					JLATIVE REMOVED		WATER	CHARACTE	RISTICS	COMMENTS		
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)		
2/11/05	13:18	13:19	1	1	0.42	7.13	0.964	*MLE	18.8	0.74		
2/11/05	13:19	13:21	2	3	1.27	7.13	1.260	*MLE	19.1	0.32		
2/11/05	13:21	13:23	2	5	2.12	7.10	1.230	620	19.3	0.32		
2/11/05	13:23	13:25	2	7	2.12	7.10	1.210	363	19.5	0.23		
2/11/05	13:23	13:25	2	/	2.97	7.07	1.210	363	19.5	0.17		
					-	-						
					-							
				I	1				1	1		

	SEN	IGI1	NEEF	RS		20	PURGE 005 - 1st Qu	_	RD		WELL NUMBER MW-08
PROJECT Ghilotti Construction Company						JOB NUMBE.	R 3 312.00	enue	RECORDED BY Amy Yardley		
	Gillio				_						es (or 5 gallons minimum
HAND PUI	MP		GING THOD	SAMPLIN METHOL		for 2" dia (±10%), o	n. wells), unto or until dry.	til water pa	rameters (pH, temp.,	cond.) have stabilized
SUBMERS	SIBLE PUMP		X .			* Oil/wet	ou intouface	nucho usod	l to aboals t	For NADI a	MLE = Meter Limit
BAILER OTHER				X		Exceeded	er interface (<999 ntu'	s).	i to check i	or NAFLS.	WILE - Meter Limit
CASING DIAMETER (D _c): 2.0 → D _c ←							SAMPLING:	2	2/11/2005		
DEPTH 1			. •		GROUND (S)	WEATHE	:R:				Sunny
WATE		3.8		▼ 🖺		TAGGED	WATER LEV	ELS FROM	TOC:	3	5.88 / 3.89
NAPL:		n.a	-0.29	h		TAGGED	WELL DEPT	H FROM TO	C:		20.26
	IICKNESS:	n.a	<u>*</u>	h }	H	PURGE V	OLUME (3 C	ASING VOLU	JMES):	7.	9 gallons
SCREEN	DEPTH:	-				DEPTH T	O WATER F	OR 80% REC	CHARGE:	7.11	ft. below TOC
TOP:		5.3		<u> </u>	TD_{c}	TIME OF	SAMPLING:				12:10
ВОТТО		20.		<u> </u>	—	DEPTH T	O WATER A	T TIME OF S	AMPLING:	4.02	ft. below TOC
TOTAL D	EPTH (TD _c	20.3	30	==	SCREEN INTERVAL	APPEARA	ANCE OF SAI	MPLE:		V	ery cloudy
Diameters in	n (inches) : De	epths in (feet)				LABORA ⁻	TORY:				tical Sciences
	NG VOLUME 3.14 (D _C / 2) ²]		2.63 gallor	ns :			IN OF CUST				
	PURGING DATA CUMULATI						WATER	CHARACTE	RISTICS	S COMMEN	
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
2/11/05	11:42	11:44	2	2	0.76	7.29	1.230	*MLE	17.2	0.24	
			2	4							
2/11/05	11:44	11:46	_	-	1.52	7.24	1.260	815	16.7	0.38	
2/11/05	11:46	11:48	2	6	2.28	7.24	1.260	524	16.8	0.37	
2/11/05	11:48	11:51	2	8	3.04	7.18	1.260	268	16.9	0.14	
					+						
					+						1
											1
					-						
											ļ

	S E N	1 G I 1	NEEF	RS		20	PURGE 005 - 1st Qu	_	RD		WELL NUMBER MW-09
PROJECT Ghilotti Construction Company						JOB NUMBE.	R 3 312.00		RECORDED BY Amy Yardley		
	Gillo								Ghilotti Av		es (or 5 gallons minimur
HAND PU	MP		GING PHOD	SAMPLIN METHOL		for 2" dia	n. wells), unt or until dry.	til water pa	rameters (pH, temp.,	cond.) have stabilized
SUBMERS BAILER OTHER	SUBMERSIBLE PUMP X BAILER X						er interface l (<999 ntu'	probe used s).	l to check f	or NAPLs.	MLE = Meter Limit
CASING	DIAMETER	(D _c): 2.0)			DATE OF	SAMPLING:			2	2/11/2005
DEPTH				\rightarrow D _C	GROUND (S)	WEATHE	:R:				Sunny
WATE	R (h):	4.0	<u> </u>	<u>- ₽</u>	SURFACE	TAGGED	WATER LEV	ELS FROM	TOC:	4	.03 / 4.02
NAPL:		n.a	* -0.25	h		TAGGED	WELL DEPT	H FROM TO	C:		20.35
NAPL TH	IICKNESS:	n.a	.*	 h	H	PURGE V	OLUME (3 C	ASING VOLU	JMES):	7.	.8 gallons
	I DEPTH:					DEPTH T	O WATER FO	OR 80% REC	HARGE:	7.23	ft. below TOC
TOP:		5.3		<u> </u>	TD_{c}	TIME OF	SAMPLING:				12:05
BOTTO	OM:	20.	3	<u> </u>	:	DEPTH T	O WATER A	T TIME OF S	AMPLING:	4.91	ft. below TOC
TOTAL D	DEPTH (TD _o	20.3	30		SCREEN INTERVAL	APPEARA	ANCE OF SAI	MPLE:		V	ery cloudy
Diameters i	n (inches) : De	epths in (feet)				LABORA ⁻	TORY:				tical Sciences
	ONE CASING VOLUME: [TD _C - H] [3.14 (D _C / 2) ²] [7.48 gal/ft ³]: 2.62 gallons					SEE CHA	IN OF CUST	RMATION.			
	PURGING DATA CUMULATIVE TOTAL REMOVED						WATER	COMMENTS			
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
2/11/05	11:23	11:25	2	2	0.76	7.34	0.629	723	16.8	0.34	
2/11/05	11:25	11:27	2	4	1.53	7.16	0.650	770	16.5	0.27	
2/11/05	11:27	11:29	2	6	2.29	7.09	0.682	*MLE	16.4	0.32	
2/11/05	11:29	11:31	2	8	3.06	7.08	0.687	*MLE	16.5	0.44	
					+						
					+						
					+						
L						<u> </u>					<u> </u>

	S E N	I G I 1	NEEF	R S		20	PURGE 005 - 1st Qu	_	RD		WELL NUMBER MW-10	
PROJECT Ghilotti Construction Company						JOB NUMBE	R 3 312.00		RECORDED BY			
	Gillo	tu Constr	iction Con	прапу					Ghilotti Av		Amy Yardley	
SUBMERS	METHOD METHOD HAND PUMP SUBMERSIBLE PUMP Y						PURGING CRITERIA Minimum of 3 wetted casing volumes (or 5 gallons minimu for 2" dia. wells), until water parameters (pH, temp., cond.) have stabilized (±10%), or until dry. REMARKS * Oil/water interface probe used to check for NAPLs. MLE = Meter Limit					
BAILER OTHER				X		Exceeded	l (<999 ntu's	s).				
CASING	DIAMETER	(D _c):2.0)	→ D _c	-	DATE OF	SAMPLING:			2	2/11/2005	
DEPTH 1	го:		1	D _C	GROUND SURFACE (S)	WEATHE	R:				Sunny	
WATE	R (h):	3.7	3 🕌			TAGGED	WATER LEV	ELS FROM	TOC:	3	5.71 / 3.73	
NAPL:		n.a	·* -0.51	h		TAGGED	WELL DEPT	H FROM TO	C:		20.3	
NAPL TH	IICKNESS:	n.a	.*		H	PURGE V	OLUME (3 C.	ASING VOLU	JMES):	8.	.0 gallons	
SCREEN	DEPTH:			11			O WATER FO				ft. below TOC	
TOP:		5.5	5		TD _c		SAMPLING:				11:55	
вотто	OM:	20.	5	<u>* </u>	. —♥				AMPLING:	2.76	-	
TOTAL D	EPTH (TD ₀	;): 20.5	50	-	SCREEN		O WATER A		AMPLING.	3.70	ft. below TOC	
Diameters i	n (inches) : De	epths in (feet)			INTERVAL		ANCE OF SAI	MPLE:			Cloudy	
ONE CASI	NG VOLUME	:			! ───₩	LABORA	TORY:		-	Analytical Sciences		
	ONE CASING VOLUME: [TD _c - H] [3.14 (D _c / 2) ²] [7.48 gal/ft ²]: 2.65 gallons					SEE CHA	IN OF CUSTO	TICAL INFO	RMATION.			
	PURGIN	IG DATA	I		JLATIVE REMOVED		WATER	CHARACTE	RISTICS		COMMENTS	
DATE	BEGIN	FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)		
2/11/05	10:45	10:47	2	2	0.75	7.60	1.140	396	17.1	0.93		
2/11/05	10:47	10:49	2	4	1.51	7.47	0.868	464	17.0	0.62		
2/11/05	10:49	10:51	2	6	2.26	7.39	0.874	*MLE	17.2	0.22		
2/11/05	10:51	10:53	2	8	3.01	7.37	0.859	*MLE	17.5	0.30		
											1	
												
											<u> </u>	

APPENDIX D

WELL SURVEY REPORT

JACOBS LAND SURVEYING 1625 PERSEUS CT. PETALUMA, CA. 94954 (707) 782-0733

DATE: 03-10-05

Job # 05-1033-S

TO: SCS Engineers

3645 Westwind Blvd.

Santa Rosa, California 95403

RE: Ghilotti Construction 246 Ghilotti Ave.

Santa Rosal, Ca.

Your Job No. 3312.00

On 03-09-05 this office ran a closed level loop with a Zeiss Ni2 Auto Level from City of Santa Rosa Benchmark, D-230, a PK nail in the curb at the northerly end of a catch basin at the Northwest corner of Todd Rd. and Standish Ave., elevation 99.021, NGVD 1929 datum, yielding the following well elevations.

MW#	Rim	Top Casing	Comments		
MW-4	98.75	98.31	(A) (N)		
MW-5	100.80	100.20	(SL) (N)		
MW-6	101.36	100.95	(SL) (N)		
MW-7	100.55	100.17	(A) (N) notched		
MW-8	98.66	98.37	(SL) (N) (P)		
MW- 9	98.71	98.46	(SL) (N) (P)		
MW-10	98.55	98.04	(SL) (N)		
KEY	(A) = Allen head bolt	(SL) = Slot $(S) = S$	mall bolt		
	(N)(E)(S)(W) = Direction	(B) = Black mark	(BN)=Black mark/notch		
	(M) = Missing/stripped bolt	(OC) = Outer casing	()		
	(P)= Pressure	(OG) = Original grade			

Temporary Benchmark: Set spike in power pole opposite northerly Ghilotti gate, elevation 99.73.

REMARKS:

All wells recovered and observed were in good condition and were resealed as found.

Steven H. Jacobs PLS 5296 I